.. _stationary_covariance_model: Parametric stationary covariance models ======================================= | Let :math:`X: \Omega \times \cD \rightarrow \Rset^d` be a multivariate stationary normal process where :math:`\cD \in \Rset^n`. The process is supposed to be zero mean. It is entirely defined by its covariance function :math:`C^{stat}: \cD \rightarrow \mathcal{M}_{d \times d}(\Rset)`, defined by :math:`C^{stat}(\vect{\tau})=\Expect{X_{\vect{s}}X_{\vect{s}+\vect{\tau}}^t}` for all :math:`\vect{s}\in \Rset^n`. | If the process is continuous, then :math:`\cD=\Rset^n`. In the discrete case, :math:`\cD` is a lattice. | This use case highlights how User can create a covariance function from parametric models. The library proposes many parametric covariance models. The *multivariate Exponential model* is one of them. :math:`C^{stat}`. **The multivariate exponential model** This model defines the covariance function :math:`C^{stat}` by: .. math:: :label: fullMultivariateExponential2 \forall \vect{\tau} \in \cD,\quad C^{stat}( \vect{\tau} )= \rho\left(\dfrac{\vect{\tau}}{\theta}\right)\, \mat{C^{stat}}(\vect{\tau}) where the correlation function :math:`\rho` is given by: .. math:: :label: rhoExponentialModel \rho(\vect{\tau} ) = e^{-\left\| \vect{\tau} \right\|_2} \quad \forall (\vect{s}, \vect{t}) \in \cD and the spatial covariance matrix :math:`\mat{C^{stat}}(\vect{s}, \vect{t})` by: .. math:: :label: cstat_exp_model \mat{C^{stat}}(\vect{\tau})= \mbox{Diag}(\vect{\sigma}) \, \mat{R} \, \mbox{Diag}(\vect{\sigma}). with :math:`\mat{R} \in \mathcal{M}_{d \times d}([-1, 1])` a correlation matrix , :math:`\theta_i>0` and :math:`\sigma_i>0` for any :math:`i`. The expression of :math:`C^{stat}` is the combination of: - the matrix :math:`\mat{R}` that models the spatial correlation between the components of the process :math:`X` at any vertex :math:`\vect{t}` (since the process is stationary): .. math:: :label: fullMultivariateExponential1 \forall \vect{t}\in \cD,\quad \mat{R} = \Cor{X_{\vect{t}}, X_{\vect{t}}} - the matrix :math:`\mbox{Diag}(\vect{\sigma})` that models the variance of each marginal random variable: .. math:: \begin{aligned} \Var{X_{\vect{t}}} = (\sigma_1, \dots, \sigma_d) \end{aligned} It is possible to define the exponential model from the spatial covariance matrix :math:`\mat{C}^{spat}` rather than the correlation matrix :math:`\mat{R}` : .. math:: :label: relRA \forall \vect{t} \in \cD,\quad \mat{C}^{spat} = \Expect{X_{\vect{t}}X^t_{\vect{t}}} = \mbox{Diag}(\vect{\sigma})\,\mat{R}\, \mbox{Diag}(\vect{\sigma}) .. topic:: API: - See :class:`~openturns.AbsoluteExponential` - See :class:`~openturns.DiracCovarianceModel` - See :class:`~openturns.ExponentialModel` - See :class:`~openturns.KroneckerCovarianceModel` - See :class:`~openturns.ExponentiallyDampedCosineModel` - See :class:`~openturns.GeneralizedExponential` - See :class:`~openturns.MaternModel` - See :class:`~openturns.SquaredExponential` .. topic:: Examples: - See :doc:`/auto_probabilistic_modeling/stochastic_processes/plot_create_stationary_covmodel` - See :doc:`/auto_probabilistic_modeling/stochastic_processes/plot_user_stationary_covmodel`