.. _qmc_simulation: Quasi Monte Carlo ----------------- | Let us note :math:`\cD_f = \{\ux \in \Rset^{n} \: | \: g(\ux,\underline{d}) \leq 0\}`. The goal is to estimate the following probability: .. math:: :label: integ \begin{aligned} P_f &=& \int_{\cD_f} f_{\uX}(\ux)d\ux\\ &=& \int_{\Rset^{n}} \mathbf{1}_{\{g(\ux,\underline{d}) \leq 0 \}}f_{\uX}(\ux)d\ux\\ &=& \Prob {\{\:g(\uX,\underline{d}) \leq 0 \}} \end{aligned} | Quasi-Monte Carlo is a technique which approximates the integral :eq:`integ` using low discrepancy sequences :math:`\{\vect{x}^1, ..., \vect{x}^N\}` instead of randomly generated sequences, as follows: .. math:: P_f \approx \frac{1}{N}\,\sum_{i=1}^N \mathbf{1}_{\cD_f}(\ux_i) f(\ux_i). | In general, the integral of a function :math:`f` on :math:`\Delta = [0,1]^s` can be approximated by using some low discrepancy sequence :math:`\{\vect{x}_1, \hdots, \vect{x}_N\}` as follows: .. math:: \int_{\Delta} f(\vect{u})\,d\vect{u} \approx \frac{1}{N}\,\sum_{i=1}^N f(\vect{x}_i). The low discrepancy sequence is generated on :math:`\Delta` according to the Lebesgue measure then may be transformed to any measure :math:`\mu` thanks to the inverse CDF technique in order to approximate the integral : .. math:: \begin{aligned} \int_{\Rset^s} f(\vect{u})\,d\vect{u} \approx \frac{1}{N}\,\sum_{i=1}^N f(\vect{x}_i). \end{aligned} As the sequence is not randomly generated, we can not use the Central Limit Theorem in order to control the quality of the approximation. This quality is given by the Koksma-Hlawka inequality that we recall here : .. math:: \begin{aligned} \left\lvert \frac{1}{N}\sum_{i=1}^Nf(\vect{x}_i) - \int_If(\vect{x})d\vect{x} \right\rvert \le Var(f)D^N(\vect{x}_1, ..., \vect{x}_N) \end{aligned} where :math:`D^N(\vect{x}_1, ..., \vect{x}_N)` is the discrepancy of the sequence :math:`\{\vect{x}_1, \hdots, \vect{x}_N\}`. | For Halton, Inverse Halton and Sobol sequences, we have : .. math:: \begin{aligned} D^N = O\biggl(\frac{\log^s{N}}{N}\biggr) \end{aligned} | Thus, asymptotically the error converges in :math:`O\biggl(\frac{\log^s{N}}{N}\biggr)`, instead of :math:`O\biggl(\frac{1}{\sqrt{N}}\biggr)` for traditional Monte Carlo. The convergence rate depends on the dimension :math:`s` so one must have :math:`N >> e^s`. .. topic:: API: - See :class:`~openturns.ProbabilitySimulationAlgorithm` - See :class:`~openturns.LowDiscrepancyExperiment` .. topic:: Examples: - See :doc:`/auto_reliability_sensitivity/reliability/plot_estimate_probability_randomized_qmc`