Taylor approximations

In this example we build a local approximation of a model using the Taylor decomposition with the LinearTaylor class.

We consider the function \vect{h} : \Rset^2 \rightarrow \Rset^2 defined by:

\vect{h}(\vect{x}) = \Tr{\left( \cos(x_1 + x_2), (x_2 + 1) e^{x_1 - 2 x_2} \right)}.

for any \vect{x} \in \Rset^2. The metamodel \widehat{\vect{h}} is an approximation of the model \vect{h}:

\vect{y} \approx \widehat{\vect{h}}(\vect{x})

for any \vect{x} \in \Rset^2. We note h_k, k=1, 2 the marginal outputs In this example, we consider two different approximations:

  • the first order Taylor expansion,

  • the second order Taylor expansion.

import openturns as ot
import openturns.viewer as viewer

ot.Log.Show(ot.Log.NONE)

Define the model

Prepare some data.

formulas = ["cos(x1 + x2)", "(x2 + 1) * exp(x1 - 2 * x2)"]
model = ot.SymbolicFunction(["x1", "x2"], formulas)

Center of the approximation.

x0 = [-0.4, -0.4]

Drawing bounds.

a = -0.4
b = 0.0

First order Taylor expansion

Let \vect{x}_0 \in \Rset^2 be a reference point where the linear approximation is evaluated. The first order Taylor expansion of the output marginal h_k is:

\widehat{h_k}(\vect{x}) = h_k(\vect{x}_0) +
  \sum_{i=1}^{2} \frac{\partial h_k}{\partial x_i}(\vect{x}_0) \left(x_i - x_{0,i} \right)

for any \vect{x} \in \Rset^2.

Create a linear (first-order) Taylor approximation.

algo = ot.LinearTaylor(x0, model)
algo.run()
responseSurface = algo.getMetaModel()

Plot the second output of our model with x_1=x_{0,1}.

graph = ot.ParametricFunction(model, [0], [x0[1]]).getMarginal(1).draw(a, b)
graph.setLegends(["Model"])
curve = (
    ot.ParametricFunction(responseSurface, [0], [x0[1]])
    .getMarginal(1)
    .draw(a, b)
    .getDrawable(0)
)
curve.setLegend("Taylor")
curve.setLineStyle("dashed")
graph.add(curve)
graph.setLegendPosition("upper right")
view = viewer.View(graph)
y1 as a function of x2

Second order Taylor expansion

Let \vect{x}_0 \in \Rset^2 be a reference point where the quadratic approximation is evaluated. The second order Taylor expansion of the output marginal h_k is:

\widehat{h_k}(\vect{x}) = h_k(\vect{x}_0) + \sum_{i=1}^{2}
\frac{\partial h_k}{\partial x_i}(\vect{x}_0) \left(x_i - x_{0,i} \right) +
\frac{1}{2} \sum_{i,j=1}^{2}
\frac{\partial^2 h_k}{\partial x_i \partial x_j}(\vect{x}_0) \left(x_i - x_{0,i} \right) \left(x_j - x_{0,j} \right)

for any \vect{x} \in \Rset^2.

Create a quadratic (second-order) Taylor approximation.

algo = ot.QuadraticTaylor(x0, model)
algo.run()
responseSurface = algo.getMetaModel()

Plot second output of our model with x_1=x_{0,1}.

graph = ot.ParametricFunction(model, [0], [x0[1]]).getMarginal(1).draw(a, b)
graph.setLegends(["Model"])
curve = (
    ot.ParametricFunction(responseSurface, [0], [x0[1]])
    .getMarginal(1)
    .draw(a, b)
    .getDrawable(0)
)
curve.setLegend("Taylor")
curve.setLineStyle("dashed")
graph.add(curve)
graph.setLegendPosition("upper right")
view = viewer.View(graph)
y1 as a function of x2
view.ShowAll()