Gaussian Process Regression : generate trajectories from the metamodel

The main goal of this example is to show how to simulate new trajectories from a Gaussian Process Regression metamodel.

Introduction

We consider the sine function:

\model(x) = \sin(x)

for any x\in[0,12].

We want to create a metamodel of this function. This is why we create a sample of n observations of the function:

y_i = \model(x_i)

for i=1,...,7, where x_i is the i-th input and y_i is the corresponding output.

We consider the seven following inputs :

i

1

2

3

4

5

6

7

x_i

1

3

4

6

7.9

11

11.5

We are going to consider a Gaussian Process Regression metamodel with:

  • a constant trend,

  • a Matern covariance model.

In the Gaussian Process Regression : quick-start example, we detail the estimation of this metamodel. Refer to it for further details: we only focus here on the simulation of new trajectories.

import openturns as ot
import openturns.viewer as otv
import openturns.experimental as otexp

Creation of the metamodel

We define the function g, the training sample (x_train, y_train) and the test sample (x_test, y_tst).

g = ot.SymbolicFunction(["x"], ["sin(x)"])
x_train = ot.Sample([[x] for x in [1.0, 3.0, 4.0, 6.0, 7.9, 11.0, 11.5]])
y_train = g(x_train)
n_train = x_train.getSize()
n_train
7
xmin = 0.0
xmax = 12.0
n_test = 101
step = (xmax - xmin) / (n_test - 1)
myRegularGrid = ot.RegularGrid(xmin, step, n_test)
x_test = myRegularGrid.getVertices()
y_test = g(x_test)

In order to observe the function and the location of the points in the input design of experiments, we define the following function which plots the data.

def plot_1d_data(x_data, y_data, type="Curve", legend=None, color=None, linestyle=None):
    """Plot the data (x_data,y_data) as a Cloud/Curve"""
    if type == "Curve":
        graphF = ot.Curve(x_data, y_data)
    else:
        graphF = ot.Cloud(x_data, y_data)
    if legend is not None:
        graphF.setLegend(legend)
    if color is not None:
        graphF.setColor(color)
    if linestyle is not None:
        graphF.setLineStyle(linestyle)
    return graphF

Here, we draw the model and the train sample.

graph = ot.Graph("Model and Train sample", "X", "Y", True, "")
graph.add(
    plot_1d_data(
        x_test, y_test, type="Curve", legend="model", color="black", linestyle="dashed"
    )
)
graph.add(
    plot_1d_data(x_train, y_train, type="Cloud", legend="train sample", color="red")
)
graph.setLegendPosition("upper right")
view = otv.View(graph)
Model and Train sample

We use the ConstantBasisFactory class to define the trend and the MaternModel class to define the covariance model. This Matérn model is based on the regularity parameter \nu=3/2.

dimension = 1
basis = ot.ConstantBasisFactory(dimension).build()
covarianceModel = ot.MaternModel([1.0] * dimension, 1.5)

We estimate the Gaussian process Y with the class GaussianProcessFitter.

fitter_algo = otexp.GaussianProcessFitter(x_train, y_train, covarianceModel, basis)
fitter_algo.run()
fitter_result = fitter_algo.getResult()
print(fitter_result)
GaussianProcessFitterResult(covariance model=MaternModel(scale=[1.27453], amplitude=[0.822263], nu=1.5), basis=Basis( [[x0]->[1]] ), trend coefficients=[0.00736753])

We observe that the scale and amplitude hyper-parameters have been optimized by the run() method, while the \nu parameter has remained unchanged, as expected.

Then, we condition the gaussian process to make it interpolate the data set using the class GaussianProcessRegression.

gpr_algo = otexp.GaussianProcessRegression(fitter_result)
gpr_algo.run()
gpr_result = gpr_algo.getResult()
print(gpr_result)
GaussianProcessRegressionResult(covariance models=MaternModel(scale=[1.27453], amplitude=[0.822263], nu=1.5), covariance coefficients=0 : [  1.13904    ]
1 : [  1.01762    ]
2 : [ -1.76279    ]
3 : [ -0.559148   ]
4 : [  1.78757    ]
5 : [ -1.61946    ]
6 : [ -0.00283147 ], basis=Basis( [[x0]->[1]] ), trend coefficients=[0.00736753])

We get the metamodel and the predictions on the test sample.

gpr_metamodel = gpr_result.getMetaModel()
y_test_MM = gpr_metamodel(x_test)

The following function plots the Gaussian Process Regression predictions on the test sample.

graph = ot.Graph("Gaussian process regression metamodel", "X", "Y", True, "")
graph.add(
    plot_1d_data(
        x_test, y_test, type="Curve", legend="model", color="black", linestyle="dashed"
    )
)
graph.add(
    plot_1d_data(x_train, y_train, type="Cloud", legend="train sample", color="red")
)
graph.add(
    plot_1d_data(
        x_test, y_test_MM, type="Curve", legend="GPR", color="blue", linestyle="solid"
    )
)
graph.setLegendPosition("upper right")
view = otv.View(graph)
Gaussian process regression metamodel

Simulate new trajectories

In order to generate new trajectories of the conditioned Gaussian process, we use the class ConditionedGaussianProcess, which provides a Process. It is created from the result of the Gaussian Process Regression algorithm.

process = otexp.ConditionedGaussianProcess(gpr_result, myRegularGrid)

The method getSample() method returns a ProcessSample.

sphinx_gallery_thumbnail_number = 3

trajectories = process.getSample(10)
type(trajectories)
graph = trajectories.drawMarginal()
graph.add(
    plot_1d_data(
        x_test,
        y_test,
        type="Curve",
        legend="model",
        color="black",
        linestyle="dashed",
    )
)
graph.add(
    plot_1d_data(x_train, y_train, type="Cloud", legend="train sample", color="red")
)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
graph.setTitle("10 simulated trajectories")
view = otv.View(graph)
10 simulated trajectories

Display all figures.

otv.View.ShowAll()