# Compute grouped indices for the Ishigami function¶

In this example, we compute grouped Sobol’ indices for the Ishigami function.

```from openturns.usecases import ishigami_function
import openturns as ot

ot.Log.Show(ot.Log.NONE)
```

We load the Ishigami test function from usecases module:

```im = ishigami_function.IshigamiModel()
```

The IshigamiModel data class contains the input distribution in im.distributionX and the Ishigami function in im.model. We also have access to the input variable names with:

```input_names = im.distributionX.getDescription()
```

Create a training sample.

```N = 100
inputTrain = im.distributionX.getSample(N)
outputTrain = im.model(inputTrain)
```

Create the chaos.

```multivariateBasis = ot.OrthogonalProductPolynomialFactory([im.X1, im.X2, im.X3])
selectionAlgorithm = ot.LeastSquaresMetaModelSelectionFactory()
projectionStrategy = ot.LeastSquaresStrategy(
inputTrain, outputTrain, selectionAlgorithm
)
totalDegree = 8
enumfunc = multivariateBasis.getEnumerateFunction()
P = enumfunc.getStrataCumulatedCardinal(totalDegree)
chaosalgo = ot.FunctionalChaosAlgorithm(
)
```
```chaosalgo.run()
result = chaosalgo.getResult()
metamodel = result.getMetaModel()
```

Print Sobol’ indices.

```chaosSI = ot.FunctionalChaosSobolIndices(result)
chaosSI
```
FunctionalChaosSobolIndices
• input dimension: 3
• output dimension: 1
• basis size: 18
• mean: [3.49861]
• std-dev: [3.71992]
Input Variable Sobol' index Total index
0 X1 0.310947 0.557563
1 X2 0.442398 0.442449
2 X3 0.000000 0.246655
Index Multi-index Part of variance
6 [0,4,0] 0.274846
1 [1,0,0] 0.185716
5 [1,0,2] 0.140606
11 [0,6,0] 0.133570
4 [3,0,0] 0.122856
8 [3,0,2] 0.083539
3 [0,2,0] 0.025294
9 [1,0,4] 0.012034

We compute the first order indice of the group [0,1].

```chaosSI.getSobolGroupedIndex([0, 1])
```
```0.7533450202235821
```

This group collects all the multi-indices containing variables only in this group, including interactions within the group (by decreasing order of significance):

• [0,4,0] : 0.279938

• [1,0,0] : 0.190322

• [0,6,0] : 0.130033

• [3,0,0] : 0.12058

• [0,2,0] : 0.0250262

```0.279938 + 0.190322 + 0.130033 + 0.12058 + 0.0250262
```
```0.7458992
```

The difference between the previous sum and the output of getSobolGroupedIndex is lower than 0.01, which is the threshold used by the __str__ method.

We compute the total order indice of the group [1,2].

```chaosSI.getSobolGroupedTotalIndex([1, 2])
```
```0.689053310039683
```

This group collects all the multi-indices containing variables in this group, including interactions with variables outside the group:

• [0,4,0] : 0.279938

• [1,0,2] : 0.136823

• [0,6,0] : 0.130033

• [3,0,2] : 0.0837457

• [0,2,0] : 0.0250262

• [1,0,4] : 0.0111867

```0.279938 + 0.136823 + 0.130033 + 0.0837457 + 0.0250262 + 0.0111867
```
```0.6667526
```