Manipulate a time series
The objective here is to create and manipulate a time series.
A time series is a particular field where the mesh
1-d and regular, eg a time grid
.
It is possible to draw a time series, using interpolation between the values: see the use case on the Field.
A time series can be obtained as a realization of a multivariate stochastic process
of dimension
where
is discretized according to the regular grid
.
The values
of the time series are defined by:
A time series is stored in the TimeSeries object that stores the regular time grid and the associated values.
import openturns as ot
import openturns.viewer as otv
Create the RegularGrid
tMin = 0.0
timeStep = 0.1
N = 100
myTimeGrid = ot.RegularGrid(tMin, timeStep, N)
Case 1: Create a time series from a time grid and values.
Be careful that the number of steps of the time grid must correspond to the size of the values
myValues = ot.Normal(3).getSample(myTimeGrid.getVertices().getSize())
myTimeSeries = ot.TimeSeries(myTimeGrid, myValues)
myTimeSeries
class=TimeSeries name=Unnamed derived from=class=FieldImplementation name=Unnamed mesh=class=Mesh name=Unnamed dimension=1 vertices=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=100 dimension=1 description=[t] data=[[0],[0.1],[0.2],[0.3],[0.4],[0.5],[0.6],[0.7],[0.8],[0.9],[1],[1.1],[1.2],[1.3],[1.4],[1.5],[1.6],[1.7],[1.8],[1.9],[2],[2.1],[2.2],[2.3],[2.4],[2.5],[2.6],[2.7],[2.8],[2.9],[3],[3.1],[3.2],[3.3],[3.4],[3.5],[3.6],[3.7],[3.8],[3.9],[4],[4.1],[4.2],[4.3],[4.4],[4.5],[4.6],[4.7],[4.8],[4.9],[5],[5.1],[5.2],[5.3],[5.4],[5.5],[5.6],[5.7],[5.8],[5.9],[6],[6.1],[6.2],[6.3],[6.4],[6.5],[6.6],[6.7],[6.8],[6.9],[7],[7.1],[7.2],[7.3],[7.4],[7.5],[7.6],[7.7],[7.8],[7.9],[8],[8.1],[8.2],[8.3],[8.4],[8.5],[8.6],[8.7],[8.8],[8.9],[9],[9.1],[9.2],[9.3],[9.4],[9.5],[9.6],[9.7],[9.8],[9.9]] simplices=[[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11],[11,12],[12,13],[13,14],[14,15],[15,16],[16,17],[17,18],[18,19],[19,20],[20,21],[21,22],[22,23],[23,24],[24,25],[25,26],[26,27],[27,28],[28,29],[29,30],[30,31],[31,32],[32,33],[33,34],[34,35],[35,36],[36,37],[37,38],[38,39],[39,40],[40,41],[41,42],[42,43],[43,44],[44,45],[45,46],[46,47],[47,48],[48,49],[49,50],[50,51],[51,52],[52,53],[53,54],[54,55],[55,56],[56,57],[57,58],[58,59],[59,60],[60,61],[61,62],[62,63],[63,64],[64,65],[65,66],[66,67],[67,68],[68,69],[69,70],[70,71],[71,72],[72,73],[73,74],[74,75],[75,76],[76,77],[77,78],[78,79],[79,80],[80,81],[81,82],[82,83],[83,84],[84,85],[85,86],[86,87],[87,88],[88,89],[89,90],[90,91],[91,92],[92,93],[93,94],[94,95],[95,96],[96,97],[97,98],[98,99]] values=class=Sample name=Normal implementation=class=SampleImplementation name=Normal size=100 dimension=3 description=[X0,X1,X2] data=[[0.608202,-1.26617,-0.438266],[1.20548,-2.18139,0.350042],[-0.355007,1.43725,0.810668],[0.793156,-0.470526,0.261018],[-2.29006,-1.28289,-1.31178],[-0.0907838,0.995793,-0.139453],[-0.560206,0.44549,0.322925],[0.445785,-1.03808,-0.856712],[0.473617,-0.125498,0.351418],[1.78236,0.0702074,-0.781366],[-0.721533,-0.241223,-1.78796],[0.40136,1.36783,1.00434],[0.741548,-0.0436123,0.539345],[0.29995,0.407717,-0.485112],[-0.382992,-0.752817,0.257926],[1.96876,-0.671291,1.85579],[0.0521593,0.790446,0.716353],[-0.743622,0.184356,-1.53073],[0.655027,0.538071,1.73821],[-0.958722,0.377922,-0.181004],[1.67297,-1.03896,-0.353552],[1.21381,-0.777033,-1.36853],[0.103474,-0.89182,0.905602],[0.334794,-0.483642,0.677958],[1.70938,1.07062,-0.506925],[-1.66086,2.24623,0.759602],[-0.510764,-0.633066,-0.957072],[0.544047,0.814561,-0.734708],[-0.111461,0.994482,-0.160625],[-0.938771,-1.96869,-0.657603],[0.338751,1.01556,0.637167],[-0.0899071,-0.855886,1.27128],[-0.238253,1.3263,2.11968],[-0.901581,-1.51696,-1.29938],[0.230372,-3.09737,0.01323],[-1.25743,1.02776,-0.766431],[0.217512,1.04533,0.331569],[-0.488205,-0.465482,0.332084],[-0.167726,3.01263,0.94204],[0.61189,0.611715,-1.5375],[-2.4067,0.662936,-0.65616],[-0.751611,0.438177,-0.455335],[1.86038,0.219721,1.72546],[-0.543405,-0.736749,-0.508206],[-2.25867,-0.5964,-0.31468],[-1.78274,-0.684734,0.0611157],[0.87372,-1.46295,-0.318786],[1.26314,-0.426726,-1.89234],[-0.514391,0.647229,0.00370249],[0.729688,-0.247234,0.479191],[-0.0336098,-0.0367271,0.110256],[-0.37687,-0.0955894,0.109122],[-0.198754,0.47362,0.161637],[0.384483,0.116468,-0.10008],[1.49156,1.22301,0.526646],[-0.656923,-0.131228,-1.45347],[1.17414,0.929395,-0.337113],[0.578688,-0.582459,-1.38886],[-0.499748,-1.55516,0.483083],[0.205004,-0.0972525,0.592563],[-0.602044,-1.21009,-0.886698],[-0.141114,0.441983,0.519162],[-1.51455,-0.676917,0.667678],[-1.40585,-0.0295335,-0.631829],[-0.342157,2.05339,1.1587],[-1.45717,-0.844367,-0.28861],[0.419271,-0.836064,0.858269],[-0.906566,-0.91681,1.16322],[0.301918,0.490331,0.475425],[-0.788704,-0.669449,-0.137928],[-0.971531,-1.18784,1.4282],[-0.58923,-1.73218,0.824993],[3.02799,1.6948,-1.64827],[-0.996469,0.773121,-0.519476],[-0.0351973,-0.439866,-0.259332],[-0.875419,-2.53986,-0.0566709],[-0.0217279,0.59922,0.146868],[-0.74536,-0.521596,0.59202],[-0.470039,-2.17211,-0.432617],[0.26775,-0.36799,1.14842],[-0.0343283,0.461082,-0.622424],[-1.62506,-0.543099,-0.269535],[0.0208818,0.623854,0.767137],[0.888798,1.48031,0.661002],[1.40895,0.576125,1.89326],[0.858611,-0.907348,-0.537503],[-0.638434,1.34856,-2.26608],[0.423232,-0.996141,-1.08751],[0.11108,0.677663,-1.05502],[-0.00409659,0.562833,-0.029616],[0.0702065,-0.23527,-1.29031],[-1.01864,-1.71131,0.943326],[-0.542319,-0.999111,-1.40457],[1.94606,0.779572,1.13848],[0.711148,-0.453386,0.618319],[0.722044,0.660021,0.465919],[-0.40773,1.45919,-0.411565],[0.549439,1.45019,-0.327249],[-1.39796,1.30115,-0.485259],[-0.272407,-0.338823,-0.790757]] start=0 timeStep=0.1 n=100
Case 2: Get a time series from a Process
myProcess = ot.WhiteNoise(ot.Normal(3), myTimeGrid)
myTimeSeries2 = myProcess.getRealization()
myTimeSeries2
| t | X0 | X1 | X2 |
| 0 | 0 | 1.739449 | 0.9359392 | 1.275114 |
| 1 | 0.1 | -0.5950037 | -0.0230083 | 1.853373 |
| 2 | 0.2 | 0.3561882 | -1.317651 | -1.194996 |
| 3 | 0.3 | -0.4436842 | -0.8262043 | -0.7488164 |
| 4 | 0.4 | 0.4340344 | -0.6442085 | -0.559902 |
| 5 | 0.5 | 0.05466818 | -0.05647917 | 0.7575347 |
| 6 | 0.6 | -0.6631575 | 0.6836458 | 0.5910434 |
| 7 | 0.7 | -2.208718 | -0.7790315 | -0.7030859 |
| 8 | 0.8 | -0.05669555 | 0.5881009 | 0.7388395 |
| 9 | 0.9 | 0.7271276 | -1.183102 | 0.8531994 |
| 10 | 1 | 1.031982 | 0.1044672 | 0.5155103 |
| 11 | 1.1 | -1.732508 | 0.3692314 | 0.6671036 |
| 12 | 1.2 | -0.5128099 | -0.4777539 | 1.262641 |
| 13 | 1.3 | 1.578458 | 1.890055 | 0.3902966 |
| 14 | 1.4 | 0.2357594 | 0.2449476 | 0.5716903 |
| 15 | 1.5 | -0.4205421 | 0.5532545 | -2.19382 |
| 16 | 1.6 | 0.4212794 | 0.7537578 | -0.5124193 |
| 17 | 1.7 | -0.3062254 | -1.211032 | 0.01748019 |
| 18 | 1.8 | -1.165014 | 0.06438942 | 0.7176094 |
| 19 | 1.9 | -0.3042681 | -0.3913752 | 0.2582147 |
| 20 | 2 | -1.490777 | 1.061818 | 0.3749687 |
| 21 | 2.1 | -0.1654673 | 0.3578707 | 0.8851181 |
| 22 | 2.2 | 1.737898 | -0.7131956 | 1.706424 |
| 23 | 2.3 | 0.4286364 | -0.2775952 | 0.4112949 |
| 24 | 2.4 | 0.3704449 | 0.1878542 | 1.432656 |
| 25 | 2.5 | -0.4161282 | -0.1228684 | 0.950488 |
| 26 | 2.6 | -0.4111282 | -0.9804902 | 0.564196 |
| 27 | 2.7 | -1.556663 | 0.6248883 | 1.057974 |
| 28 | 2.8 | -0.7695287 | 1.542366 | 0.3748018 |
| 29 | 2.9 | 0.5061052 | 0.4197679 | 1.58128 |
| 30 | 3 | 0.009563751 | -0.3830202 | 0.1636987 |
| 31 | 3.1 | 1.256104 | 0.006203967 | 0.2720044 |
| 32 | 3.2 | -0.1537841 | -0.404166 | 2.092243 |
| 33 | 3.3 | 0.6750433 | -0.3832085 | -0.3552394 |
| 34 | 3.4 | -1.305296 | -1.515767 | 0.172158 |
| 35 | 3.5 | 0.5776802 | -0.1730494 | 0.6621723 |
| 36 | 3.6 | 0.6978382 | 0.7895777 | 0.4793068 |
| 37 | 3.7 | -0.4494332 | 1.765705 | 0.281658 |
| 38 | 3.8 | 0.1279809 | -0.7479662 | 0.5128914 |
| 39 | 3.9 | 1.08613 | -0.5519517 | 1.578906 |
| 40 | 4 | -0.2223936 | 0.2055034 | 1.338509 |
| 41 | 4.1 | 0.04525299 | 2.156495 | 1.009849 |
| 42 | 4.2 | 1.188981 | 1.287652 | -0.2798472 |
| 43 | 4.3 | -0.5673421 | 0.07894311 | -0.3740983 |
| 44 | 4.4 | 0.36891 | -0.2162491 | -0.9644931 |
| 45 | 4.5 | 1.142547 | 0.2719525 | -0.6267599 |
| 46 | 4.6 | -1.245543 | -0.7938689 | 0.8086521 |
| 47 | 4.7 | 0.551898 | 1.262139 | -0.3987307 |
| 48 | 4.8 | -2.13505 | 0.4206717 | -0.1649563 |
| 49 | 4.9 | -1.277891 | -0.748335 | 0.447628 |
| 50 | 5 | 1.606495 | -1.238318 | -0.8571127 |
| 51 | 5.1 | -0.7960124 | 2.555329 | -1.409656 |
| 52 | 5.2 | 0.1617572 | 1.071526 | -0.07561517 |
| 53 | 5.3 | -0.3858102 | -0.6958986 | -0.2401711 |
| 54 | 5.4 | 0.01403395 | -1.327828 | -0.4218051 |
| 55 | 5.5 | -1.31457 | -0.314242 | 0.8700968 |
| 56 | 5.6 | -1.050287 | -0.6617487 | -0.3989571 |
| 57 | 5.7 | -0.3068693 | 2.240972 | -1.842254 |
| 58 | 5.8 | -1.126287 | -0.343091 | 1.357067 |
| 59 | 5.9 | -1.141444 | 0.7199106 | 0.6912884 |
| 60 | 6 | 0.01574154 | 0.8978544 | -0.02689165 |
| 61 | 6.1 | -1.172528 | -1.223227 | 1.337288 |
| 62 | 6.2 | -0.4120875 | 1.405077 | 0.8399413 |
| 63 | 6.3 | -0.1718261 | -0.6121364 | 0.4331895 |
| 64 | 6.4 | 1.259888 | -2.151353 | 0.6383845 |
| 65 | 6.5 | 1.198597 | 0.5760515 | -2.721058 |
| 66 | 6.6 | -0.4566343 | 0.8344516 | 0.1897228 |
| 67 | 6.7 | -1.559897 | 0.141706 | -0.3128766 |
| 68 | 6.8 | -1.096692 | 1.306282 | -0.6035431 |
| 69 | 6.9 | 0.08447148 | -1.011566 | -0.4541302 |
| 70 | 7 | 0.184323 | 1.111031 | 0.03326554 |
| 71 | 7.1 | -0.4027267 | 0.8121354 | 0.1379583 |
| 72 | 7.2 | -0.5523964 | 0.7122982 | 0.6577979 |
| 73 | 7.3 | -0.2971004 | 0.2881424 | -0.843501 |
| 74 | 7.4 | 1.481402 | 0.9048591 | 0.9005403 |
| 75 | 7.5 | 0.2113785 | 0.408217 | -0.2907085 |
| 76 | 7.6 | -1.037685 | 0.4036742 | -0.03612466 |
| 77 | 7.7 | -0.04399572 | 1.578567 | 1.445033 |
| 78 | 7.8 | -0.9083433 | -1.329003 | -0.4762143 |
| 79 | 7.9 | 1.022384 | -1.197875 | 2.596026 |
| 80 | 8 | 0.1498547 | -0.390626 | -0.3116555 |
| 81 | 8.1 | -0.4514491 | 0.2370956 | 0.6243862 |
| 82 | 8.2 | -0.5553002 | 0.7656447 | 0.5092548 |
| 83 | 8.3 | 0.4161323 | -1.428256 | -0.1552423 |
| 84 | 8.4 | 1.198645 | -0.1898108 | -1.099809 |
| 85 | 8.5 | 0.7271951 | 0.5664686 | -1.437003 |
| 86 | 8.6 | -0.2535926 | 0.8982354 | 0.7326738 |
| 87 | 8.7 | -0.1095485 | -0.4859692 | -0.3567203 |
| 88 | 8.8 | -1.259387 | 0.03497645 | -0.4096377 |
| 89 | 8.9 | 0.7955166 | -2.108143 | -0.9148845 |
| 90 | 9 | 1.095021 | -0.06328519 | 2.003632 |
| 91 | 9.1 | -0.1248814 | 0.06040856 | -0.4496756 |
| 92 | 9.2 | 0.15909 | -2.043173 | 1.061442 |
| 93 | 9.3 | -1.444155 | 0.7511011 | 0.8440584 |
| 94 | 9.4 | -1.239076 | 0.743606 | 1.434637 |
| 95 | 9.5 | 0.07700021 | -2.187386 | 0.2376129 |
| 96 | 9.6 | 0.8050322 | 0.7841974 | 1.021327 |
| 97 | 9.7 | -0.3590296 | -1.166527 | 1.017866 |
| 98 | 9.8 | 0.2758391 | 0.907344 | 0.359928 |
| 99 | 9.9 | 1.178278 | 1.578528 | 2.0749 |
Get the number of values of the time series
Get the dimension of the values observed at each time
myTimeSeries.getMesh().getDimension()
Get the value
at index 
i = 37
print("Xi = ", myTimeSeries.getValueAtIndex(i))
Xi = [-0.488205,-0.465482,0.332084]
Get the time series at index
: 
i = 37
print("Xi = ", myTimeSeries[i])
Xi = [-0.488205,-0.465482,0.332084]
Get a the marginal value at index
of the time series
i = 37
# get the time stamp:
print("ti = ", myTimeSeries.getTimeGrid().getValue(i))
# get the first component of the corresponding value :
print("Xi1 = ", myTimeSeries[i, 0])
ti = 3.7
Xi1 = -0.4882047479037244
Get all the values
of the time series
| X0 | X1 | X2 |
| 0 | 0.6082017 | -1.266173 | -0.4382656 |
| 1 | 1.205478 | -2.181385 | 0.3500421 |
| 2 | -0.355007 | 1.437249 | 0.810668 |
| 3 | 0.793156 | -0.4705256 | 0.2610179 |
| 4 | -2.290062 | -1.282885 | -1.311781 |
| 5 | -0.09078383 | 0.9957932 | -0.1394528 |
| 6 | -0.5602056 | 0.4454897 | 0.322925 |
| 7 | 0.4457853 | -1.038077 | -0.8567123 |
| 8 | 0.4736169 | -0.1254977 | 0.3514178 |
| 9 | 1.782359 | 0.07020736 | -0.7813665 |
| 10 | -0.7215334 | -0.2412235 | -1.787964 |
| 11 | 0.4013597 | 1.367826 | 1.004343 |
| 12 | 0.7415484 | -0.04361234 | 0.5393447 |
| 13 | 0.2999504 | 0.4077172 | -0.485112 |
| 14 | -0.382992 | -0.7528166 | 0.2579264 |
| 15 | 1.96876 | -0.6712905 | 1.855792 |
| 16 | 0.05215933 | 0.7904458 | 0.7163526 |
| 17 | -0.743622 | 0.184356 | -1.530734 |
| 18 | 0.6550275 | 0.5380715 | 1.738213 |
| 19 | -0.9587223 | 0.3779221 | -0.1810042 |
| 20 | 1.672965 | -1.038958 | -0.3535524 |
| 21 | 1.213814 | -0.7770331 | -1.368531 |
| 22 | 0.1034744 | -0.8918195 | 0.9056017 |
| 23 | 0.3347945 | -0.4836416 | 0.6779583 |
| 24 | 1.709379 | 1.07062 | -0.5069247 |
| 25 | -1.660864 | 2.246229 | 0.7596015 |
| 26 | -0.5107638 | -0.6330662 | -0.9570722 |
| 27 | 0.5440466 | 0.8145607 | -0.7347084 |
| 28 | -0.1114608 | 0.9944819 | -0.1606253 |
| 29 | -0.9387706 | -1.968692 | -0.6576035 |
| 30 | 0.3387511 | 1.015558 | 0.6371672 |
| 31 | -0.08990712 | -0.8558864 | 1.271283 |
| 32 | -0.2382526 | 1.326299 | 2.119676 |
| 33 | -0.9015814 | -1.516965 | -1.29938 |
| 34 | 0.2303724 | -3.097374 | 0.01323 |
| 35 | -1.25743 | 1.02776 | -0.7664307 |
| 36 | 0.2175121 | 1.045333 | 0.3315688 |
| 37 | -0.4882047 | -0.4654821 | 0.3320839 |
| 38 | -0.1677258 | 3.012627 | 0.9420405 |
| 39 | 0.6118901 | 0.6117152 | -1.537497 |
| 40 | -2.406702 | 0.662936 | -0.6561602 |
| 41 | -0.7516115 | 0.438177 | -0.4553346 |
| 42 | 1.860378 | 0.2197212 | 1.725463 |
| 43 | -0.5434055 | -0.7367488 | -0.5082064 |
| 44 | -2.258672 | -0.5963998 | -0.31468 |
| 45 | -1.782738 | -0.6847338 | 0.06111571 |
| 46 | 0.8737197 | -1.462953 | -0.3187856 |
| 47 | 1.263142 | -0.4267256 | -1.892343 |
| 48 | -0.5143905 | 0.6472294 | 0.003702486 |
| 49 | 0.7296878 | -0.2472338 | 0.479191 |
| 50 | -0.03360983 | -0.03672706 | 0.1102562 |
| 51 | -0.3768704 | -0.09558941 | 0.1091224 |
| 52 | -0.1987541 | 0.4736195 | 0.1616373 |
| 53 | 0.3844829 | 0.1164676 | -0.1000805 |
| 54 | 1.491564 | 1.223005 | 0.5266463 |
| 55 | -0.6569234 | -0.1312282 | -1.453471 |
| 56 | 1.174145 | 0.9293947 | -0.3371135 |
| 57 | 0.5786883 | -0.5824589 | -1.388861 |
| 58 | -0.4997483 | -1.555158 | 0.483083 |
| 59 | 0.2050042 | -0.09725248 | 0.5925631 |
| 60 | -0.6020445 | -1.210086 | -0.8866979 |
| 61 | -0.1411137 | 0.4419834 | 0.519162 |
| 62 | -1.514551 | -0.6769174 | 0.6676776 |
| 63 | -1.405845 | -0.02953347 | -0.6318287 |
| 64 | -0.3421569 | 2.053386 | 1.158703 |
| 65 | -1.45717 | -0.8443667 | -0.2886103 |
| 66 | 0.4192711 | -0.8360644 | 0.8582686 |
| 67 | -0.9065659 | -0.9168099 | 1.163221 |
| 68 | 0.3019183 | 0.4903313 | 0.4754246 |
| 69 | -0.7887043 | -0.6694492 | -0.137928 |
| 70 | -0.9715312 | -1.187838 | 1.428203 |
| 71 | -0.5892299 | -1.732176 | 0.8249934 |
| 72 | 3.02799 | 1.694797 | -1.648267 |
| 73 | -0.9964693 | 0.7731214 | -0.5194758 |
| 74 | -0.03519734 | -0.4398656 | -0.2593322 |
| 75 | -0.875419 | -2.539863 | -0.05667093 |
| 76 | -0.02172791 | 0.5992195 | 0.1468679 |
| 77 | -0.7453604 | -0.521596 | 0.5920202 |
| 78 | -0.4700387 | -2.172109 | -0.4326173 |
| 79 | 0.2677502 | -0.3679897 | 1.148417 |
| 80 | -0.0343283 | 0.4610818 | -0.6224244 |
| 81 | -1.625056 | -0.5430992 | -0.2695349 |
| 82 | 0.0208818 | 0.6238537 | 0.7671373 |
| 83 | 0.8887984 | 1.480306 | 0.6610018 |
| 84 | 1.408952 | 0.5761247 | 1.893265 |
| 85 | 0.8586112 | -0.9073479 | -0.5375027 |
| 86 | -0.6384336 | 1.348564 | -2.266083 |
| 87 | 0.4232324 | -0.9961412 | -1.087506 |
| 88 | 0.11108 | 0.6776631 | -1.055018 |
| 89 | -0.004096592 | 0.5628333 | -0.02961597 |
| 90 | 0.07020646 | -0.2352699 | -1.290308 |
| 91 | -1.01864 | -1.711309 | 0.943326 |
| 92 | -0.5423195 | -0.9991113 | -1.40457 |
| 93 | 1.946062 | 0.7795719 | 1.138475 |
| 94 | 0.7111476 | -0.4533858 | 0.6183194 |
| 95 | 0.7220435 | 0.6600207 | 0.4659188 |
| 96 | -0.4077298 | 1.45919 | -0.4115654 |
| 97 | 0.5494387 | 1.450193 | -0.3272495 |
| 98 | -1.397957 | 1.301151 | -0.4852593 |
| 99 | -0.2724066 | -0.3388229 | -0.7907566 |
Compute the temporal Mean
It corresponds to the mean of the values of the time series
myTimeSeries.getInputMean()
class=Point name=Unnamed dimension=3 values=[-0.025392,-0.027327,-0.0146978]
Draw the marginal
of the time series using linear interpolation
graph = myTimeSeries.drawMarginal(0)
view = otv.View(graph)

With no interpolation
graph = myTimeSeries.drawMarginal(0, False)
view = otv.View(graph)

Display all figures