GumbelCopulaFactory¶
(Source code
, png
)
- class GumbelCopulaFactory(*args)¶
Gumbel Copula factory.
Methods
build
(*args)Build the distribution.
buildAsGumbelCopula
(*args)Estimate the copula as native copula.
buildEstimator
(*args)Build the distribution and the parameter distribution.
Accessor to the bootstrap size.
Accessor to the object's name.
Accessor to the known parameters indices.
Accessor to the known parameters values.
getName
()Accessor to the object's name.
hasName
()Test if the object is named.
setBootstrapSize
(bootstrapSize)Accessor to the bootstrap size.
setKnownParameter
(values, positions)Accessor to the known parameters.
setName
(name)Accessor to the object's name.
See also
Notes
We note the Kendall- of the sample.
We use the following estimator:
- __init__(*args)¶
- build(*args)¶
Build the distribution.
Available usages:
build()
build(sample)
build(param)
- Parameters:
- sample2-d sequence of float
Data.
- paramsequence of float
The parameters of the distribution.
- Returns:
- dist
Distribution
The estimated distribution.
In the first usage, the default native distribution is built.
- dist
- buildAsGumbelCopula(*args)¶
Estimate the copula as native copula.
Available usages:
buildAsGumbelCopula()
buildAsGumbelCopula(sample)
buildAsGumbelCopula(param)
- Parameters:
- sample2-d sequence of float,
Data of dimension 2.
- paramsequence of float of size 1,
The parameter .
- Returns:
- copula
GumbelCopula
The estimated copula as a Gumbel copula.
In the first usage, the default Gumbel copula is built.
- copula
- buildEstimator(*args)¶
Build the distribution and the parameter distribution.
- Parameters:
- sample2-d sequence of float
Data.
- parameters
DistributionParameters
Optional, the parametrization.
- Returns:
- resDist
DistributionFactoryResult
The results.
- resDist
Notes
According to the way the native parameters of the distribution are estimated, the parameters distribution differs:
Moments method: the asymptotic parameters distribution is normal and estimated by Bootstrap on the initial data;
Maximum likelihood method with a regular model: the asymptotic parameters distribution is normal and its covariance matrix is the inverse Fisher information matrix;
Other methods: the asymptotic parameters distribution is estimated by Bootstrap on the initial data and kernel fitting (see
KernelSmoothing
).
If another set of parameters is specified, the native parameters distribution is first estimated and the new distribution is determined from it:
if the native parameters distribution is normal and the transformation regular at the estimated parameters values: the asymptotic parameters distribution is normal and its covariance matrix determined from the inverse Fisher information matrix of the native parameters and the transformation;
in the other cases, the asymptotic parameters distribution is estimated by Bootstrap on the initial data and kernel fitting.
- getBootstrapSize()¶
Accessor to the bootstrap size.
- Returns:
- sizeint
Size of the bootstrap.
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getKnownParameterIndices()¶
Accessor to the known parameters indices.
- Returns:
- indices
Indices
Indices of the known parameters.
- indices
- getKnownParameterValues()¶
Accessor to the known parameters values.
- Returns:
- values
Point
Values of known parameters.
- values
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- setBootstrapSize(bootstrapSize)¶
Accessor to the bootstrap size.
- Parameters:
- sizeint
The size of the bootstrap.
- setKnownParameter(values, positions)¶
Accessor to the known parameters.
- Parameters:
- valuessequence of float
Values of known parameters.
- positionssequence of int
Indices of known parameters.
Examples
When a subset of the parameter vector is known, the other parameters only have to be estimated from data.
In the following example, we consider a sample and want to fit a
Beta
distribution. We assume that the and parameters are known beforehand. In this case, we set the third parameter (at index 2) to -1 and the fourth parameter (at index 3) to 1.>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Beta(2.3, 2.2, -1.0, 1.0) >>> sample = distribution.getSample(10) >>> factory = ot.BetaFactory() >>> # set (a,b) out of (r, t, a, b) >>> factory.setKnownParameter([-1.0, 1.0], [2, 3]) >>> inf_distribution = factory.build(sample)
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.