CramerVonMisesNormal¶
- CramerVonMisesNormal(sample, level=0.05)¶
- Evaluate whether a sample follows a normal distribution. - Refer to Cramer-Von Mises test. - Parameters:
- sample2-d sequence of float
- Tested sample. 
- levelpositive float, optional
- Threshold p-value of the test (= first kind risk), it must be - , equal to 0.05 by default. 
 
- Returns:
- testResultTestResult
- Structure containing the result of the test. 
 
- testResult
 - Notes - The test is used to check whether the sample follows a normal distribution. The test concerns the deviation squared and integrated over the entire variation domain, it often appears to be more robust than the Kolmogorov-Smirnov test. - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Normal() >>> sample = distribution.getSample(30) >>> test_result = ot.NormalityTest.CramerVonMisesNormal(sample) >>> print(test_result) class=TestResult name=Unnamed type=CramerVonMisesNormal binaryQualityMeasure=true p-value threshold=0.05 p-value=0.682524 statistic=0.0399704 description=[] 
 OpenTURNS
      OpenTURNS