SparseMethod¶
- class SparseMethod(*args)¶
- Least squares solver using a sparse representation. - Available constructors:
- SparseMethod(method) - SparseMethod(method, basisSequenceFactory, fittingAlgorithm) 
 - Parameters:
- methodLeastSquaresMethod
- Least squares resolution method 
- basisSequenceFactoryBasisSequenceFactory
- Basis enumeration algorithm 
- fittingAlgorithmFittingAlgorithm
- Validation algorithm 
 
- method
 - Methods - computeWeightedDesign([whole])- Build the design matrix. - getBasis()- Accessor to the basis. - Accessor to the object's name. - Current indices accessor. - Get the inverse Gram matrix of input sample. - Get the diagonal of the inverse Gram matrix. - Get the trace of the inverse Gram matrix. - getH()- Get the projection matrix H. - getHDiag()- Get the diagonal of the projection matrix H. - Initial indices accessor. - Input sample accessor. - getName()- Accessor to the object's name. - Accessor to the weights. - hasName()- Test if the object is named. - setName(name)- Accessor to the object's name. - solve(rhs)- Solve the least-squares problem. - solveNormal(rhs)- Solve the least-squares problem using normal equation. - Drop the current decomposition. - update(addedIndices, conservedIndices, ...)- Update the current decomposition. - See also - Examples - >>> import openturns as ot >>> basisSize = 3 >>> sampleSize = 5 >>> X = ot.Sample.BuildFromPoint(range(1, 1 + sampleSize)) >>> phis = [ot.SymbolicFunction(['x'], ['x^' + str(j + 1)]) for j in range(basisSize)] >>> basis = ot.Basis(phis) >>> proxy = ot.DesignProxy(X, phis) >>> full = range(basisSize) >>> design = ot.Matrix(proxy.computeDesign(full)) >>> method = ot.SparseMethod(ot.QRMethod(proxy, full)) >>> normal = ot.Normal([1.0] * sampleSize, [0.1] * sampleSize) >>> y = normal.getRealization() >>> yAt = design.transpose() * y >>> x = method.solve(y) - __init__(*args)¶
 - computeWeightedDesign(whole=False)¶
- Build the design matrix. - Parameters:
- wholebool, defaults to False
- Whether to use the initial indices instead of the current indices 
 
- Returns:
- psiAkMatrix
- The design matrix 
 
- psiAk
 
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getCurrentIndices()¶
- Current indices accessor. - Returns:
- indicesIndices
- Indices of the current decomposition in the global basis. 
 
- indices
 
 - getGramInverse()¶
- Get the inverse Gram matrix of input sample. - Returns:
- cCovarianceMatrix
- The inverse Gram matrix. 
 
- c
 
 - getGramInverseDiag()¶
- Get the diagonal of the inverse Gram matrix. - Returns:
- dPoint
- The diagonal of the inverse Gram matrix. 
 
- d
 
 - getGramInverseTrace()¶
- Get the trace of the inverse Gram matrix. - Returns:
- xfloat
- The trace of inverse Gram matrix. 
 
 
 - getH()¶
- Get the projection matrix H. - Returns:
- hSymmetricMatrix
- The projection matrix H. 
 
- h
 
 - getInitialIndices()¶
- Initial indices accessor. - Returns:
- indicesIndices
- Initial indices of the terms in the global basis. 
 
- indices
 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - hasName()¶
- Test if the object is named. - Returns:
- hasNamebool
- True if the name is not empty. 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 - solve(rhs)¶
- Solve the least-squares problem. - Parameters:
- bsequence of float
- Second term of the equation 
 
- Returns:
- aPoint
- The solution. 
 
- a
 
 - solveNormal(rhs)¶
- Solve the least-squares problem using normal equation. - Parameters:
- bsequence of float
- Second term of the equation 
 
- Returns:
- xPoint
- The solution. 
 
- x
 
 - trashDecomposition()¶
- Drop the current decomposition. 
 - update(addedIndices, conservedIndices, removedIndices, row=False)¶
- Update the current decomposition. - Parameters:
- addedIndicessequence of int
- Indices of added basis terms. 
- conservedIndicessequence of int
- Indices of conserved basis terms. 
- removedIndicessequence of int
- Indices of removed basis terms. 
 
 
 
 OpenTURNS
      OpenTURNS