TrendTransform¶
- class TrendTransform(*args)¶
Trend transformation.
Methods
Get the number of calls of the function.
Accessor to the object's name.
Get the function of .
Get the description of the input field values.
Get the dimension of the input field values.
Get the mesh associated to the input domain.
Accessor to the inverse trend function.
getMarginal
(*args)Get the marginal(s) at given indice(s).
getName
()Accessor to the object's name.
Get the description of the output field values.
Get the dimension of the output field values.
Get the mesh associated to the output domain.
Accessor to the trend function.
hasName
()Test if the object is named.
Whether the function acts point-wise.
setInputDescription
(inputDescription)Set the description of the input field values.
setInputMesh
(inputMesh)Set the mesh associated to the input domain.
setName
(name)Accessor to the object's name.
setOutputDescription
(outputDescription)Set the description of the output field values.
setOutputMesh
(outputMesh)Set the mesh associated to the output domain.
Notes
A multivariate stochastic process of dimension d where may write as the sum of a trend function and a stationary multivariate stochastic process of dimension d as follows:
We note the values of one field of the process X, associated to the mesh of . We note the values of the resulting stationary field. Then we have:
Examples
Create a trend function: where :
>>> import openturns as ot >>> myGrid = ot.RegularGrid(0.0, 0.1, 10) >>> f = ot.SymbolicFunction(['t'], ['1+2*t+t^2']) >>> fTrend = ot.TrendTransform(f, myGrid)
Add it to a process:
>>> amplitude=[5.0] >>> scale=[0.2] >>> myCovModel=ot.ExponentialModel(scale, amplitude) >>> myXProcess=ot.GaussianProcess(myCovModel, myGrid) >>> myYProcess = ot.CompositeProcess(fTrend, myXProcess)
Remove it from a field:
>>> myField = myYProcess.getRealization() >>> myStatField = fTrend.getInverse()(myField)
Then re-add it:
>>> myInitialField = fTrend(myStatField)
- __init__(*args)¶
- getCallsNumber()¶
Get the number of calls of the function.
- Returns:
- callsNumberint
Counts the number of times the function has been called since its creation.
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getFunction()¶
Get the function of .
- Returns:
- l
Function
Function .
- l
Examples
>>> import openturns as ot >>> h = ot.SymbolicFunction(['t', 'x'], ['x + t^2']) >>> n = 1 >>> mesh = ot.Mesh(n) >>> myVertexValueFunction = ot.ValueFunction(h, mesh) >>> print(myVertexValueFunction.getFunction()) [t,x]->[x + t^2]
- getInputDescription()¶
Get the description of the input field values.
- Returns:
- inputDescription
Description
Description of the input field values.
- inputDescription
- getInputDimension()¶
Get the dimension of the input field values.
- Returns:
- dint
Dimension of the input field values.
- getInverse()¶
Accessor to the inverse trend function.
- Returns:
- myInverseTrendTransform
InverseTrendTransform
The function.
- myInverseTrendTransform
- getMarginal(*args)¶
Get the marginal(s) at given indice(s).
- Parameters:
- iint or list of ints,
Indice(s) of the marginal(s) to be extracted.
- Returns:
- function
VertexValueFunction
The initial function restricted to the concerned marginal(s) at the indice(s) .
- function
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getOutputDescription()¶
Get the description of the output field values.
- Returns:
- outputDescription
Description
Description of the output field values.
- outputDescription
- getOutputDimension()¶
Get the dimension of the output field values.
- Returns:
- d’int
Dimension of the output field values.
- getOutputMesh()¶
Get the mesh associated to the output domain.
- Returns:
- outputMesh
Mesh
The output mesh .
- outputMesh
- getTrendFunction()¶
Accessor to the trend function.
- Returns:
- trend
Function
The trend function of a process.
- trend
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- isActingPointwise()¶
Whether the function acts point-wise.
- Returns:
- pointWisebool
Returns true if the function evaluation at each vertex depends only on the vertex or the value at the vertex.
- setInputDescription(inputDescription)¶
Set the description of the input field values.
- Parameters:
- inputDescriptionsequence of str
Description of the input field values.
- setInputMesh(inputMesh)¶
Set the mesh associated to the input domain.
- Parameters:
- inputMesh
Mesh
The input mesh .
- inputMesh
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
- setOutputDescription(outputDescription)¶
Set the description of the output field values.
- Parameters:
- outputDescriptionsequence of str
Describes the outputs of the output field values.