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Abstract 

A scalar model output Y is assumed to depend deterministically on a set of stochastically independent input vectors 
of different dimensions. The composition of the variance of Y is considered; variance components of particular relevance 
for uncertainty analysis are identified. Several analysis of variance designs for estimation of these variance components 
are discussed. Classical normal-model theory can suggest optimal designs. The designs can be implemented with various 
sampling methods: ordinary random sampling, latin hypercube sampling and scrambled quasi-random sampling. Some 
combinations of design and sampling method are compared in two small-scale numerical experiments. @ 1999 Elsevier 
Science B.V. 

Ko,vvords: Variance-based, regression-free, uncertainty analysis; Experimental design; Latin hypercube sampling; Scrambled quasi-random 
sampling 

1. Introduct ion 

We study a scalar output Y of a deterministic model, Y = f ( X 1 . . .  Xk) ,  in which X I . . .  Xk are stochastically 
independent inputs or groups of inputs. The groups Xs may have different sizes. It will be assumed that Y has 
finite mean and variance. 

Under these assumptions, output Y can be decomposed into mean, main effects and interactions up to order 
k, 

Y = / z + Z E i + Z e s j + - . ' ,  ( I )  
S i<j 

in which ~-i depends on Xi; es) on Xi and X), etcetera [3,16]. The e's have zero mean, and variances cry, o-,.2./. , 
. . . ;  they are uncorrelated but need not be independent. The variance is composed as 

i i<.j 
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Formulas (1) and (2) are called the analysis of variance (ANOVA) decomposition of Y. 
With respect to input group Xi, two variance components are particularly relevant for uncertainty analysis: 

the main-effect variance of Xi and what will be called the all-effects variance of Xi. The main-effect variance of 
Xi, MEV[Xi] for short, is defined as the expected variance reduction when Xi would become perfectly known, 

that is, 

MEV[Xi] = Var[Y] - E[Var[YIXi]] .  (3) 

By the well-known relation, Var[Y] = E[Var[YIXi]] + Var[E[YIXi] ], MEV can be written as 

MEV[Xi] = Var[E[Y[Xi] ] ,  (4) 

and under the independence assumptions mentioned, MEV is equal to 

MEV[Xil = o-,.2. (5) 

The all-effects variance of X,, AEV[Xi] for short, is defined as the expected variance remaining as long as X~ 
stays unknown, whereas all other inputs, which will be collectively denoted by X(i~, are perfectly known; that 

is, 

AEV[ Xi] = El Var[ YlX(i) ] ] • (6) 

This variance component can also be written as 

AEV[Xi] = Var[Y] - Var[E[YIX(i~] ] .  (7) 

Under the assumed input group independence, AEV is equal to the sum of all variances o -2 in the right-hand 
side of (2) in which subscript i is present, or more formally, 

AEV[Xi] = ~-~o-~. (8) 

It follows from (3) and (6) that MEV[Xi] and AEV[X(i)] are complementary, 

Var[Y] = MEV[Xi] + AEV[X(i)] .  (9) 

Moreover, (5) and (8) lead to the inequality 

MEV[Xt] < AEV[Xi] .  (10) 

The variance components MEV and AEV are known under many names: importance measures, sensitivity 
estimates, global sensitivity indices, top and bottom marginal variances; the classical correlation ratio is the 
main effect variance as fraction of the total variance [ 16,7,5,8,18]. 

Designs that allow the estimation of variances with a reasonable accuracy tend to be large, so there is a need 
to construct efficient designs, e.g. [8,18]. The efficiency of a design to estimate these variance components 
depends on the model, the selected output and the distributions of the inputs. By that fact, general conclusions 
are hard to obtain. In this paper we discuss the case that el, ,Ei.j . . . .  are independently normally distributed. 
This case can be studied with classical ANOVA theory for random effect models, which has a rich literature, 
e.g. [ 14]. Although normality will not often arise in the uncertainty analysis of a model, it is hoped that the 
efficiency properties derived will be robust, and that a normal analysis may be helpful in suggesting promising 
designs. 

Numerical experiments with the designs proposed can be conducted with several sampling methods, ordinary 
random sampling being the most obvious candidate, while latin hypercube sampling [9,11,17] and quasi- 
random sampling [ 10] constitute possibly more efficient alternatives. The purpose of the alternative methods is 
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to obtain more accurate estimates by a more even covering of the sample space. The problem with quasi-random 
sampling is that it is actually non-random, which precludes statistical assessment of the estimation accuracy. 
But the recent invention by Owen [12] of randomly scrambled quasi-random sampling may surmount this 
problem. 

Many theoretical points can be discussed when one discerns only two input groups; designs for that situation 
are discussed in Section 2. Section 3 continues with designs for more than two input groups. Some analytical 
normal-theory results follow in Section 4. Next, in Section 5, alternatives to ordinary random sampling are 
briefly mentioned. Section 6 discusses some experimental results for a non-normal case. The paper closes with 
a discussion in Section 7. 

2. Designs for two independent input groups 

Denote the inputs under study by U and the complementary inputs by V. For instance, with k = 5, U = 
{X2, X5} and V = {XI, X3, X4}. With some abuse of notation, we denote the model output studied by f ( U ,  V) .  

2.1. Nes ted  design 

According to (9), the total variance Vat[Y] is equal to the sum of MEV[U] and AEV[ V]. These variances 
can be estimated without bias from a nested design that has an m × n data matrix, 

Yii,./ = f ( U ( ' ) ,  VO'j)) ( i=  1 . . .m;  j = 1 . . . n ) .  (11) 

We indicate independent draws from a random input by using different superscripts between round brackets. 
For instance, V ~'1), V {1'2) and V {2A) denote independent draws of V. The design can be analyzed with standard 
ANOVA, e.g. [6]. A similar design, with U and V interchanged, allows estimation of MEV[ V] and AEV[ U]. 

2.2. Combi -nes ted  design 

Sobol' [16] proposed 
V. The resulting design has an m x 3 data matrix defined by 

Y,,1 = f ( U  (iA) , V(iA~ ) , 

Yi,2 = f ( U  ~i't) , V ¢''2) ) , 

Y/,3 = f ( U  0'2) , v(iA) ) • 

The analysis consists of ANOVA of the two constituent nested designs. 

a combination of two nested designs with n = 2 to estimate MEV and AEV of U and 

(12) 

2.3. Al ternat ing design 

Unbiased estimation of MEV and AEV of U and V is also possible with the following alternating design. 
When going through its m × 2 data matrix in reading order, one encounters in turn new draws of U and V, 

Yi,1 = f ( U ° ) , v ~ i ) ) ,  Yi.2 = f ( U ° ) , V  ¢i+1)) ( i=  1 . . . m ) .  (13) 

The total variance, Var[Y], can be estimated unbiasedly by the variance of either column. The all-effects 
variance of V is estimated without bias by the mean of the series ½(Y,~ - Y,2) 2. Consecutive terms of this 
series are correlated, whereas terms further apart are independent. Thus, the variance of the mean of the series 
can be estimated in the same way as the variance of the mean of a moving average time-series. Similarly, 



3 8  M.J. W. Jansen~Computer Physics Communications 117 (1999) 35-43 

the all-effects variance of  U is estimated by the mean of  the series ½(Y/.2 - Yi+J,1 )2. The main effect variance 
M E V [ U ]  can be estimated as the complement of AEV[V]  with respect to Var[Y]. 

2.4. Crossed design 

Obviously, unbiased estimation of  MEV and AEV of U and V is possible via ANOVA of a crossed design [6] 
that has the data matrix 

Yi,i= f ( u ( i ) , v  (/)) ( i =  l . . . m ; j =  l . . . n ) .  (14) 

For large m and tt the crossed design soon becomes inefficient, because the interaction variance o-~-/v9 is estimated 
with much better accuracy than the main effect variances o-2i and O-2v . One should use replicated crossed designs 
instead. 

3. Designs for more than two independent input groups 

With increasing number of  input groups, replicated crossed designs, even at two levels per input, soon become 
inefficient. Combi-nested designs for each input group are more promising [ 16,18]. 

3.1. Winding stairs design. 

A winding stairs design [5] allows estimation of  MEV and AEV of all input groups considered. When going 
through the matrix of  this design in reading order, one encounters cyclically new draws of  Xj, X2 . . .  Xk, 

Yi# = ,l÷'( "'l , ,,,v(i+°(J-2)) , . . . ,  X~ '+°(/-k)) ) (15) 

(i = I . . .  m; j = I . . .  k). The function 0 is the unit jump function: 0 ( s )  = 0 if s < 0, and O(s) = 1 otherwise. 
With three input groups, for instance, the first few rows of the data matrix have the [orm 

f (Xl  j) X ~  1) X ( 1 ) )  
, _ ~ 3 , 

f (xl  2),x~ 2)_ ,x  (2)~ ), 
.f ( x l  3) , x~ ~), x)~) ) , 

,f(xl~) v(4)x~4)) , -4  2 , • " 

, f(xl  '~ , x{ ~), x~ ')) ,  
f ( X [ 2 ) , X ~ 3 ) , X ~ 2 ) )  , 

f ( x l  ~) , x {  ~) , x~")), / (x{  ~) , x~ ~), x ~ ) ) .  

Two columns of  a winding stairs sample constitute an alternating design. Column 3 and 5, for instance, 
of a winding stairs sample with k > 6 sources constitute an alternating design for U = {X4, Xs} and V = 
{X6 . . .  Xk, Xj . . .  X3}. Thus, a winding stairs design allows estimation of MEV and AEV of  all input groups 
Xi, and also of  pools of  groups that are adjacent in the cycle of  new draws. 

4. Some analytical results 

This section treats some efficiency results about nested and alternating designs, under the assumption that 
the e's in the ANOVA-decomposition ( 1 ) are normally distributed. 

4. ]. Nested design 

In the nested design (11),  y,j can, according to ( 1 ) and (2),  be considered as 
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Yi, i = t z + rli + Oi,i , 

in which the r/ 's and O's are uncorrelated (but in general not independent)  with means 0 and variances r 2 _- 0-] 
and 05 2 ~ o -2 + o-,],, respectively. Each element Y,./ has variance r 2 + 052, the covariance of  two elements in the 
same row equals 7 "2. 

The nested design can be used to estimate M E V [ U ]  = r 2 and AEV[V]  = 052 with standard ANOVA, e.g. [6] .  
The mean squares for row and row.column are independently distributed proportional to two x2-distributions,  

MSrow ~ ( / / 7  2 q-  0 5 2 ) X 2 , _ l / ( m  - -  1)  , 

"~ 2 MS,.ow.coj "~ ~b-2",,,(,,_ j ~ / ( m (  n - l ) ) ,  

implying for the expected mean squares and degrees of freedom that 

E[MSrow] = n r  2 + q5 2, DFrow = m - 1 , 

E[MSrow.coJ] = 052, DF,-ow.col = m (  n - 1 ) . 

Accordingly,  we have the following estimates: 

q~2 = MSrow.co l  , 

f2 = (MSrow - MSrow.col)/n. 

The total mean square underestimates the total variance 7.2 q_ 052 : 

E[MStot] = 7.2 + 052 __ [ ( n  - -  l ) / ( m n  -- 1 ) ] 7 . 2 ;  

but the bias tends to zero when the number of  rows, m, tends to infinity, at a fixed number of columns, n. It 
may happen that f2, as calculated above, assumes a negative value. In that case the original unbiased estimates 
may be replaced by f2 = 0 and q~2 = M S t o t / D F t o  t . Uncertainty analysis via ANOVA of a nested design is also 
discussed in [8] ,  with a slightly different solution for the problem of  possibly negative variance estimates. 

The efficiency of  the nested design has been treated by Robertson [ 13]. The author treats the estimation of  
the correlation ratio or fraction of variance accounted for by rows, that is, the quantity 

r = r 2 / ( r  2 + 052) , 

which is estimated by substituting the estimates f2 and q~2. The resulting estimate for r is distributed as 
~ (CeZ, i ~ - t ~ Z 2 ) / ( T Z l  q - ~ Z 2 ) ,  in which zj and z2 are independently x2-distributed, while the degrees of  

freedom and the coefficients o r . . .  6 depend on the values of  052 and r 2, and on the design parameters m and n 
according to the previous formulas. The variance of  ? may be shown to be approximately equal to 

Var(?) ~ 2[ 1 + (n - 1 ) r ]  2( 1 - r ) 2 / [ n ( n  - l ) ( m  - 1 ) ] . 

Robertson [ 1 3] derived that, with a fixed number of  function evaluations ran,  this approximation of  the variance 
of ? is minimal when the number of  columns is equal to n* = l / r .  Or rather, an integer number close to n* 
is optimal. Obviously,  one should have some advance knowledge of  the magnitude of  r in order to be able to 
derive a design that is not too far from optimal. 

4.2 .  A l t e r n a t i n g  d e s i g n  

1 The all-effects variance of  V is estimated without bias by the mean of  the series di =- 5(I//1,1 - -  ~ , 2 )  2 from 
(13) .  Consecutive terms of  this series are correlated, whereas terms further apart are independent. Thus, the 
correlation structure of  the series is as of  a first-order moving average time-series. Each term di is distributed 
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as (cry, + o-~jv)X?. Consecutive terms have correlation p = g(O-v/(~r?~ + o-~jv))", whereas terms further apart 
are independent. Thus, the mean, Ma~t say, of d l . . .  d,~, has variance 

Var[Malt] = [(O'v + o'~,v)Z/m][1 + 2p (m  - l ) /m]  
9 "~ 9 

= [ (cry, + o~,v)- + o-~(m - l ) / ( 2 m ) ] / m  

2 i M E V [ V ] 2 ) / m .  (16) (AEV[ V] + 

4.3. Relative efficiency: combi-nested and alternating design 

The mean, Me,, say, of the series di ~ ½(Yii.J - Y.2) 2 of a combi-nested design ( 11 ) has variance 

Var(M~.~) : (o-~, + o'~jv)2/m : AEV[  V]2/m. (17) 

Thus, if one would only want to estimate AEV[V], and if one would restrict the combi-nested design to its 
first two columns, the relative efficiency of alternating versus combi-nested satisfies, because of (16) and (17), 

t MEV[V]2) > 2/3, ef t=  A E V [ V ] 2 / ( A E V [ V ]  2 + ~ 

with equality only if AEV[V] = MEV[V],  i.e. if there is no interaction (cf. Eqs. (5), (8), (10)) .  The same 
applies, with interchange of U and V, for estimation of AEV[U].  

However, if one wants to estimate both AEV[ V] and AEV[U],  the story becomes different, because combi- 
nested will then need a third column, which reduces the efficiency of combi-nested by a factor 2/3. Then, an 
alternating design is at least as efficient as a combi-nested one; with equal efficiency if and only if there is no 
interaction. Thus, under normality, an alternating design is at least as efficient as a combi-nested design. 

5. Alternatives to ordinary random sampling 

Up to now, it was assumed that the successive input vectors X[ i) are independent, which corresponds 
to ordinary random sampling, OR for short. (Remember that i = 1 . . . k  indicates the input vector, while 
j = 1 ,2 . . .  indicates successive draws). Quite often, the accuracy of the estimations may be improved by 
alternative sampling methods such as latin hypercube sampling and quasi-random sampling, which have been 
devised to obtain a more even covering of the sample space. These alternative sampling methods can be applied 
if for each Xi a random draw can be realized by a random draw from a homogeneous distribution on a unit-cube 
of the same dimension as Xi, followed by some transformation. Because of the independence of the X's, this 
implies that a full set, X l . . .  Xk, of input vectors can also be realized by a draw from a multidimensional 
unit-cube followed by a transformation. The alternative sampling methods deal with sampling from this latter 
unit-cube. Some algorithms for quasi-random sampling impose restrictions on the dimension of the unit-cube, 
e.g. [ 1 ], which may hamper the uncertainty analysis of models with high-dimensional input. 

Latin hypercube sampling (LH),  a form of restricted random sampling, is well known in uncertainty anal- 
ysis [9,17,11 ]. In this paper we will use LH in conjunction with the method of Iman and Conover [4] to 
suppress spurious correlations. The repeatability of LH estimates of variance components can be assessed in the 
statistical way by replication of sampling and estimation procedure; but systematic error, bias, is not detected 
in this way. 

Quasi-random sampling (QR) yields a sample of points in the unit-cube that are, in a sense, maximally 
avoiding each other, and thus fill the cube very evenly, e.g [10]. The problem with QR sampling is that it is 
actually non-random, which impedes the statistical assessment of estimation accuracy. But the recent invention 
by Owen [ 12] of randomly scrambled QR samples may overcome this problem. When it is scrambled, a QR 
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sample retains its desired equidistribution properties. In this paper we use scrambled Sobol '  (SS) samples [ 15]. 
The algorithm [1] used for Sobol'  samples is restricted to dimensions up to 40. 

Since the approach is rather new, we will briefly sketch how a Sobol'  sample is scrambled; see [ 12] for 
more details. The individual coordinates of  the sample take values in the interval [0, 1 ). The values of  each 
coordinate are independently scrambled in the following way. First the interval [0, 1) is divided into two slices 
[0, ~) and [1 _ 5, 1 ) ; their contents are interchanged or not with probability ½. Subsequently, each half is divided 

into two quarts, which are interchanged, within their half, with probability ½; independently for each half. Then 
the quarts are splitted into two parts which are independently interchanged within the quarts; and so on. Since 
the scrambled samples have the same equidistribution properties as the original samples, it is possible to reach 
the superior accuracy of  original Sobol' samples, while the repeatability can be assessed by random replication 
of the scrambling. As with LH sampling, bias is not detected in this way. 

6. S o m e  e x p e r i m e n t a l  resul ts  

The purpose of  this section is to investigate experimentally, on a small scale, the robustness of  the efficiency 
results that were derived in Section 4 under the assumption that model output and its ANOVA decomposition 
( 1 ) are normally distributed. Instead of a complex model, we study a simple test function that was chosen to 
be lognormal rather than normal, 

f ( U , V )  = e  U e v .  

The inputs U and V are independent normal, with mean 0 and variances log(2) and 1og(2.5), respectively. 
Thus, e U and e v are lognormal, as well as their product f ( U ,  V).  From well-known lbrmulas for the mean and 
variance of  the lognormal distribution, it can be derived that the variance of f ( U ,  V) can be decomposed into 
o-, = 5, o- = 7.5 and o-~, = 7.5. 

The first experiment compares the efficiency of a combi-nested design (12) and an alternating design (13).  
According to the (normal) theory of  Section 4, the alternating design should be at least as efficient as the 
combi-nested. 

The second experiment was performed to compare the efficiency of  a two-column and a four-column nested 
design (11).  According to Section 4, the optimal number of  columns for estimating the correlation ratio r 

2 2 O'2r) = ~. SO one would expect that the two-column design is less would be four, since r = o'u/(o- u + o-~ + I 
efficient than the four-column design. 

Each design was implemented with three sampling methods: scrambled Sobol'  (SS) ,  latin hypercube (LH) 
and ordinary random (OR) ;  which leads to 6 types of  analysis when two designs are compared. 

6.1. Combi-nested versus alternating design 

The number of  rows was equal to 1024 in both designs, so the number of 'model runs' per analysis is 
3 × 1024 for the combi-nested design and 2 × 1024 for the alternating design. Each of  the 6 types of  analysis 
was performed in 30 batches of  1000 analyses. MEV and AEV were estimated per analysis. Per batch of  1000, 
the means and variances of  the estimates were kept. The means were analyzed in order to detect possible biases, 
while the variances were analyzed in order to compare efficiencies. We corrected for difference in number of  
function evaluations by multiplying the variances of the alternating design with 2/3.  It would have been more 
sophisticated to compare samples of the same size, but that was precluded by the fact that the software used 
for scrambled Sobol'  sampling forced us to use an integer power of  2 as number of  rows. The significance 
tests performed were: ANOVA on ranks with sampling method and design as treatments; and the Wilcoxon 
rank sum test to compare different combinations of  design and sampling method. Table 1 gives the estimated 
coefficient of  variation, between random replications of the individual analyses, of the estimates of  M E V [ U ] .  
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Table l 
Coefficient of variation of MEVI U ] 

SS LH OR 

combi-nested 0.29 0.49 0.55 
alternating 0.28 0.38 0.4 I 

Table 2 
Coefficient of variation of f 

SS LH OR 

2 columns 0.20 0.29 0.30 
4 columns 0.15 0.21 0.23 

The further analysis of  this particular case leads to the following conclusions: 
(a) SS performs much better than LH and OR, despite some small but statistically significant bias. The 

difference between LH and OR is smaller. 
(b) The bias in SS estimates is an order smaller than the random variation. For instance, M E V [ U ]  has an 

estimated relative bias of  -0 .04 ,  whereas the coefficient of  variation is estimated as 0.29 for combi-nested 
and 0.28 for alternating. 

(c) The alternating design is more efficient than the combi-nested design with LH and OR sampling. With 
SS, however, the advantage is not significant. 

(d) The coefficient of  variation of  the estimates is large anyhow: for the estimate of  M E V [ U ] ,  lbr instance, 
it ranged from 28% to 55%. 

6.2. Two versus four  columns in a nested design 

The number of  rows was 1024 in the two-column analyses and 512 in the four-column analyses, so that 
the number of  'model runs' was equal. Each of  the 6 types of  analysis was performed in 40 batches of 1000 
analyses. The correlation ratio was estimated per analysis. Per batch of  1000, the means and variances of  the 
estimates were kept. The method of  analysis was the same as in the previous experiment. Table 2 gives the 
estimated coefficient of  variation, between random replications of  the individual analyses, of the estimates of r. 

The analysis lead to similar conclusions as in the previous experiment: 
(a) In this particular case too, SS performs much better than LH and OR. The difference between LH and 

OR is less pronounced, but statistically significant. 
(b) The bias in SS estimates is much smaller than the random variation. For instance, with the two-columns 

design the estimate of  r has an estimated relative bias of  +0.04, whereas its coefficient of  variation is 
estimated as 0.20. 

(c) As expected, the four-column design is more efficient than the two-column design. 
(d) The coefficient of  variation of  the estimate of  the correlation ratio r ranges from 15% to 30%. 

7. Discussion 

Analytical and, admittedly anecdotal, experimental findings indicate that worthwhile efficiency improvements 
may in principle be obtained by judicious choice of  analysis of  variance design and sampling method. In 
general, scrambled quasi-random sampling, rather than latin hypercube or ordinary random sampling, may have 
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a beneficial  effect.  A disadvantage  o f  scrambled quas i - random and latin hypercube  sampl ing  is that accuracy 

has to be assessed by replication,  whereas  with ordinary random sampl ing the accuracy can be assessed f rom 

a single exper iment .  
The  Four ie r  Ampl i t ude  Sensi t ivi ty Test has not been treated, a l though it permits  es t imat ion o f  the same 

var iance componen t s  [2 ,18] .  This  design is o f  an a l together  different  type; moreover ,  it is non- random,  which 

demands  other, non-statist ical ,  methods  to assess accuracy. 
Under  the assumpt ion o f  normali ty,  the accuracy of  the est imators  can be calculated analyt ical ly  as funct ion 

of  the var iances  to be est imated.  The  problem is that these variances are not  known in advance.  Thus,  the 

possibi l i ty  to extend designs  according  to results of  in termediate  analyses  consti tutes an ingredient  o f  efficiency. 

Most  des igns  ment ioned  can be extended in width and in length. In width,  by starting with a sample  o f  pooled  

sources,  and splitt ing only those pools  that appeared to be important.  In length,  by adding rows to the data 

matrix if  it appeared that some est imates  are not yet sufficiently accurate.  

Eff ic iency is a clear  concept  when there is only  one est imand of  interest, like in the case of  the nested design,  

where  it was possible  to pinpoint  the opt imal  design. When  the number  o f  es t imands is large, however ,  it is 

not easy to formula te  an adequate  opt imali ty  criterion. By this fact, it is hard to make  general  s ta tements  about  

optimality.  
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