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Multiple design points in first and second-order reliability
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Abstract

A method is developed to successively find the multiple design points of a component reliability problem,
when they exist on the limit-state surface. FORM or SORM approximations at each design point followed
by a series system reliability analysis is shown to lead to improved estimates of the failure probability.
Three example applications show the generality and robustness of the method. © 1998 Elsevier Science
Ltd. All rights reserved
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1. Introduction

In the first-order reliability method, FORM, an approximation to the probability of failure is
obtained by linearizing the limit-state surface (the boundary of the failure domain) at the ‘“‘design
point”. This is the point on the limit-state surface that is nearest to the origin in a standard nor-
mal space obtained by a suitable transformation of the random variables. Due to the rotational
symmetry and exponential decay of the probability density in the standard normal space, the
design point has the highest likelihood among all points in the failure domain. It follows that the
neighborhood of this point makes the dominant contribution to the failure probability integral.
This property is the basis for the FORM, which in effect constructs an approximation to the
failure probability integral by using the tangent plane at the design point as the integration
boundary. The second-order reliability method, SORM, improves on this approximation by
using a quadratic surface fitted at the design point as the integration boundary. Experience has
shown that FORM and SORM approximations are sufficiently accurate for engineering pur-
poses, provided that the design point is accurately found and no other minimum-distance points
(local design points) exist on the limit-state surface [1,2].
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The design point, denoted u*, is the solution to the constrained optimization problem

min{|| u || |G(w) = 0}, M

where u denotes the vector of standard normal variables obtained by transforming the original
random variables, and G(u) is the limit-state function defining the reliability problem in the
transformed space such that G(u)<0 denotes the failure event. To solve Eq. (1) using a gradient-
based approach, starting from an initial point uy, a sequence of points w;, i=1, 2...., is generated
according to the rule

uy = w4+ Ad;, (2)

where d; is a search direction vector and A, is a step size. Algorithms differ in their choice of d; and
A;. For example, the iHL-RF algorithm developed by Zhang and Der Kiureghian [3] and used
later in this study employs

1
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where VG(u) is the gradient of the limit-state function. The step size A; is selected such that the
inequality m(u; + Ad,) <m(u,) holds, where m(u) is the merit function

m(w) = 3 1w I +elGul, @

in which ¢ is a parameter satisfying the condition ¢ > ||ul|/|| VG(u)|| at each step. This algorithm is
globally convergent, i.e., the sequence is guaranteed to converge to a minimum-distance point on
the limit-state surface, provided G(u) is continuous and differentiable. However, as with any non-
convex optimization problem, it is not guaranteed that the solution point will be the global
minimum-distance point.

We define the multiple solutions of Eq. (1) asu}, i=1, 2,... . Associated with each solution, we
define the distance B; =|| u} ||, which is the corresponding “reliability index”. These distances
provide relative measures of importance of the design points: the smaller g; is, the more impor-
tant u; is. The design point closest to the origin, having the smallest 8; value, is denoted the global
design point. The remaining points, having larger distances from the origin, are denoted local
design points.

The existence of multiple design points may cause the following problems in FORM and
SORM:

1. The optimization algorithm may converge to a local design point. In that case, the FORM
and SORM solutions will miss the region of dominant contribution to the failure probability
integral and, hence, the corresponding approximations will be in gross error.

2. Even if the global design point is found, there could be significant contributions to the fail-
ure probability integral from the neighborhoods of the local design points. Approximating
the limit-state surface only at the global design point will not account for these contributions.
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At the present time, no reliable and efficient method is available to find the local solutions of
Eq. (1), or to ascertain that a solution found is the global design point. One method often sug-
gested is to repeat the analysis with different starting points and hope that all the solution points
will be found. Unfortunately, it is possible for all trials to converge to the same point even when
other solution points exist. Global optimization methods [4] are usually heuristic in nature and
depend on the structure of the problem. To our knowledge, no previous attempts have been made
to use global optimization techniques to solve the structural reliability problem defined by Eq. (1).

In this paper, a simple heuristic method is developed to find the multiple design points of a
reliability problem, when they exist. Once these points are found, FORM or SORM approxima-
tions are constructed at these points and the probability of interest is computed by series system
reliability analysis as the probability of the union of the approximated events (see the ‘“multi-
point” FORM and SORM methods described by Ditlevsen and Madsen [2]). The basic idea of
the method is presented in the following two sections. This is followed with three examples. The
first two are simple two-variable examples, which are used to graphically demonstrate the meth-
odology. The third example is a 10-story building with a tuned mass damper, whose properties
are uncertain. This problem involves 33 random variables and represents an example of practical
Interest.

2. Basic idea of the method

In optimization theory, a common trick to find multiple solutions to a problem is to construct
“barriers” around previously found solutions, thereby forcing the algorithm to seek a new solu-
tion [5]. In the present case, since the objective function is the distance |ju|| from the origin, a
“barrier” around a first solution point uj [see Fig. 1(a)] can be constructed by moving the limit-
state surface in the neighborhood of uj away from the origin. We accomplish this by adding a
“bulge” to the limit-state surface in the manner illustrated in Fig. 1(b). The limit-state function
for the deformed surface is

Gi(u) = G(u) + Bi(w), (5

where B;(u) defines the bulge fitted at uj. The specifics of the bulge are defined in the following
section. Solving the optimization problem with the limit-state function G(u) leads to a second
solution point u}, as illustrated in Fig. 1(b). A bulge B,(u) is now added at uj [Fig. 1(c)], resulting
in the limit-state function G»(u)= G,(u)+ B,(u), which can be used to seek a third solution point
u;. This process is continued until all design points are found. Thus, the limit-state function for
finding the m-th design point is

m—1
Gme1 (W) = G2(u) + By_1(u) = G(u) + Y _ Bi() (6)
i=1

As is evident in Fig. 1(b)-(c), each bulge introduces spurious minimum-distance points located at
the feet of the bulge, €.g., point uj in Fig. 1(c). Theoretically speaking, it is possible for the opti-
mization algorithm to converge to these spurious design points. However, in practice, this does
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Figure 1. Successive use of bulges to find multiple design points.

not pose a problem because of the following reasons: (a) assuming the limit-state surface is not
oscillatory in nature (a basic assumption for application of FORM and SORM), when multiple
design points exist the surface tends to have inward curvature (curved towards the origin) at these
points. On the other hand, the foot of the bulge has strong outward curvature (curved away from
the origin). The iHL-RF algorithm as well as most gradient-based algorithms tend to converge
more easily to solution points with inward curvature than those with outward curvature. Hence,
if a genuine design point exists, it is unlikely that convergence to the foot of the bulge rather than
the genuine design point will occur; (b) in the unlikely case when convergence to a spurious design
point does occur, it can be easily identified in the manner described in the following section. One
may then add a bulge at the spurious solution point and continue the search for genuine design
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points. Qur experience shows, however, that this occurs only when there is no other genuine
design point. Hence, convergence to a spurious design point usually is an indication that no other
genuine design point exists.

In defining the bulge in the following section, we make sure that the foot of the bulge has a
strong outward curvature. Furthermore, the starting point for subsequent iterations is selected in
the direction away from the previous bulges to reduce the possibility of convergence at their feet.

3. Definition of the bulge

The following considerations lead to the definition of a bulge B,(u) at a design point u;:

1.

2.

B{u) must have a positive value in the neighborhood of u} (in order to move the limit-state
surface in this neighborhood away from the origin) and zero elsewhere.

For reasons described above, it is desirable that the bulge have a strong outward curvature
at its feet.

. Each of the deformed limit-state functions G,,(u)= G(u)+ >, B;(u) must be continuous and

differentiable. Provided the original limit-state function G(u) is continuous and differ-
entiable, this requirement is satisfied if each B{u) is continuous and differentiable. Based on
this and the preceding considerations, we select

Biw) =si(ri— lu—u |9 fu—uy|<r, 7
=0 elsewhere

in which #; is the radius of the bulge and s; is a positive scale factor. The profile of the bulge is
shown in Fig. 2. Note that the second derivative of B(u) at the foot || w — u} ||= r; is 8s;2. It
follows that 5; and r; must be large in order to have a strong curvature at the foot of the bulge.
We make the following considerations in selecting the radius r; of the bulge: Assuming the
limit-state surface is not oscillatory in nature, the multiple design points on the surface, if
they exist, are usually far apart. If they are closely spaced, then owing to the smoothness of

B,(w)

0.0 1.0

Figure 2. Profile of the bulge for s5;,=1.
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the surface, the corresponding tangent planes must be nearly coincident, which implies that
only one of these points need be considered. It follows that the radius r; can be selected quite
large without the bulge concealing other significant design points. We select r; = yB;, where y
is a parameter. A small y is conservative but may produce insufficient curvature at the foot
of the bulge, whereas a large y may result in a bulge that conceals other significant design
points. Our experience has shown that a value of y around 1, but not equal to 1, is a good
choice. The problem with selecting y =1 is that the edge of the bulge coincides with the ori-
gin and this causes problems when the origin is selected as the starting point ug in the opti-
mization algorithm. In the following analyses y=1.1 is used.

. The scale parameter s; controls the height of the bulge and, hence, the distance by which the

limit-state surface around wu; is moved away from the origin. s; must be sufficiently large to
assure a strong curvature at the foot of the bulge. To select this parameter, we consider the
cross section a—a of Fig. 1(a), shown in Fig. 3, which is a plot of the surface G— G;u
through the design point. The gradient vector normal to this surface is [1 — VG(u?)"]”. It
follows that the slope of the curve at u} is tan 6 =|| VG(u}) ||. Suppose we want to push the
design point uf away from the origin by the amount é8;, where 0 <§<y. It is clear from
Fig. 3 that the necessary height of the bulge at that point is approximately
dBitan 6 =8B, | VG(u?) ||. Using Eq. (7), this gives

_ 381 VG |
[(vB)* — (3BT
For the analyses in this paper §=0.75 is used.

(8)

Egs. (7) and (8) together with the parameters y and § completely define the bulge at each design

point u; in terms of the quantities 8; and || VG(u?) ||, which are readily available from the opti-
mization algorithm at its convergence. Of course this definition of the bulge is not unique. For
example, one can consider powers other than 2 in Eq. (7), or use an elliptical shape bulge. The
bulge defined above, however, has been found through many numerical examples to be effective
in tricking the optimization algorithm to converge to subsequent design points.

A further choice that needs to be made is that of the initial point uy. Our experience shows that

this point should not be selected on the boundary of a bulge. If such a point is selected, the

4

G

-VG
u;
tangent 6
plane

surface G—G(u)=0

Figure 3. Cross section a-a.
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optimization algorithm tends to follow the perimeter of the bulge and converge to a spurious
design point at the foot of the bulge. A simple choice is ug =0 for all design points, provided y#1
is used. We have employed this starting point in the first two examples below in order to
demonstrate that the algorithm converges to the subsequent design points when starting from the
same initial point. However, we have found it to be more efficient (fewer steps needed to con-
verge) if ug is chosen on the opposite side of previous bulges. A simple rule for the selection of u,
for finding the mth design point, thus, is

= —e@} +u+---+u,_,), 9)

where ¢ is a small positive number in the range 0.2-0.5.

We define by ¢; the angle between uf and a line from the origin to the foot of the bulge B(u), as
shown in Fig. 4. The largest value of ¢; occurs when the limit-state surface is spherical. In that
case the distance to the foot is also equal to 8;. Using the rule of cosines for the triangle in Fig. 4,
we find

@ < cos™ (1 —0.5¢7). (10)

For y=1.1, we have ¢;<66°. This is the half-angle of an hyper-cone that completely contains the
bulge. Any design point found within this cone is potentially spurious.

Another way to determine if a newly found design point is spurious is to compute its distance
from previously found design points. If the distance to a previous design point u} is smaller than
or equal to the radius r; of the corresponding bulge, then the newly found design point is at the
foot of the bulge and, therefore, is spurious.

Convergence to a spurious design point usually is an indication that no more genuine design
points exist. However, to make sure that this is the case, one may wish to add a new bulge at the
spurious design point and continue the search. Naturally, the spurious design point should not be
included in the reliability calculations.

>

Figure 4. Definition of cone containing the bulge.
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4, Example applications
4.1. Example 1: Parabolic limit state

This example is defined by the parabolic limit-state function

Gu) = b —uy — w(uy —e), (11)

where b, « and e are deterministic parameters and u; and u, are standard normal variables. By
properly selecting b, « and e, one can define limit-state surfaces that have one or two design
points.

Shown in Fig. 1(a) is the limit-state surface G(u)=0 for =5, k=0.5 and e=0.1. The surface
has two design points. Using the iHL-RF algorithm with u,=0 and a convergence tolerance of
10~ on the reliability index, we obtain, after 10 iterations, the first design point
u} = [—2.741 0.965]" with 8, =2.906 and || VG(u}) ||= 3.011. The steps are depicted in Fig. 1(a).
Now we add the bulge B)(u) at uj in accordance to Eqgs. (7) and (8) with the parameter values

y=1.1 and §=0.75. The new limit-state surface, G;(u)=G(u)+ B;(u}=0, is shown in Fig. 1(b).
Usmg the iHL-RF algorithm with G,(u) and employing the same initial point and tolerance,
convergence to the second design point is achieved in 7 steps with u} = [2.916 1. 036] =3.094
and || VG(u3) ||= 2.988. The steps are shown in Fig. 1(b). Now suppose we proceed further and
place a bulge B,(u) at u3, ignoring the fact that no other genuine design point exists. The corre-
sponding limit-state surface, G,(u)= G(u) + B (u) + Bo(u) =0, is shown in Fig. 1(c). Starting from
up =0, the iHL-RF algorithm now converges to wj = [—1.6123. 721] with 8;=4.055, as shown in
Fig. 1(c). The angles between this and the previous design point vectors are cos™'[(u} - u})/
(B1B83)] = 47° and cos™![(u} - u})/(B2B3)] = 148°. Obviously u} is within the cone containing the
bulge of the first design point. The distance || uf — uj ||= 2.978 between the two design points is
less than but close to the radius r; =1.1x2.906 =3.197 of the bulge, thus confirming that uj is a
spurious design point at the foot of bulge B)(u). At this stage, we are convinced that u} and uj are
the only legitimate design points for this problem.

In a conventional FORM/SORM application, not knowing the existence of two design points,
we would have constructed linear or quadratic approximations at either uj or wj. The corre-
sponding approximations of the probability of failure p,=P[G(u)<0] are listed in Table 1. In the
present case, having found two design points, FORM and SORM approximations are
constructed at both these points. The probability of failure is now computed as the probability of
the union of the two failure events represented by the two approximating surfaces. The results
together with an “exact’ solution obtained by Monte Carlo simulation are listed in Table 1.

Table 1
Probability x 107 estimates for Example 1

uj alone u; alone uj and u; Monte Carlo
FORM SORM FORM SORM FORM SORM

0.183 0.197 0.099 0.107 0.282 0.304 0.297
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Whereas the approximations based on a single design point are in error and dependent on the
design point used, the approximations based on the two design points are in close agreement with
the Monte Carlo simulation resulit.

4.2. Example 2: Non-normal random variables

The second example is a well known problem in FORM and SORM. Originally introduced by
Hohenbichler and Rackwitz [6], the problem has been discussed by Madsen et al. [1] and Ditle-
vsen and Madsen [2]. Although the limit-state function is linear in the original space, because of
strong non-normality of the random variables, in the standard normal space the limit-state sur-
face is strongly nonlinear and possesses two design points. Conventional FORM and SORM
provide results that are inaccurate and strongly dependent on the ordering of the random vari-
ables.

The problem is defined by the limit-state function

g(x1, x2) = 18 = 3x3 — 2x3, (12)

where x; and x; are random variables having the joint cumulative distribution function

F(x), x3) = 1 —exp(—x;) — exp(—x32) + exp[—(x) + x2 + x1x2)] x1, x2 > 0. (13)

As described by Hohenbichler and Rackwitz [6], there are (at least) two distinct transformations
to the standard normal space:

(x1,x2) = (U1, w2):  up = d Y1 — exp(—x;)}

B (14a)
up = @7 {1 — (1 + x2) exp[—(x2 + x1x2)]}

and

(x1,x2) = (U, uwp): u = oY1 - exp(—x,)}

- (14b)
up = {1 — (1 + x1) exp[—(x1 + x1x2)]}
where ®~!{-} denotes the inverse of the standard normal cumulative probability function. These
transformations result in the two alternative definitions of the limit-state surface shown in Fig. 5.
Although the limit-state function in the original space is linear, in the standard normal space the
limit-state surfaces are strongly warped due to the nonlinearity of the transformation. Further-
more, each surface exhibits two distinct design points. Obviously a FORM/SORM analysis using
a single design point would lead to erroneous and different solutions for the two alternative
transformations. Madsen et al. [1] and Ditlevsen and Madsen [2] discuss this issue and suggest
FORM and SORM approximations at the two design points. However, they do not discuss how
to obtain the multiple design points for a general problem.
Employing the iHL-RF algorithm with the transformation in Eq. (14a), using uy=0 and a
tolerance of 1074, convergence is achieved in 6 steps to w’ = [2.7820.0865]" with B, =2.784.
Adding a bulge at uj and re-applying the iHL-RF algorithm, convergence is achieved in 13 steps
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to u; = [—1.296 3.253]T with 8,=3.501. Employing the transformation in (14b), convergence is
achieved in 9 steps to uj = [—1.124 2.399J_T with 8, =2.649, and adding a bulge, convergence is
achieved in 9 steps to w3 = [3.630 0.1420]" with B, =3.633. The FORM and SORM approxima-
tions of the estimated probabilities using fittings at single or multiple design points are listed in
Table 2. Also listed is the exact solution of the problem obtained by Monte Carlo simulation, as
reported by Madsen et al. [1]. It is observed that the estimates based on a single design point
strongly depend on the transformation used and the design point found. On the other hand, the
SORM estimates based on fittings at the two design points are less dependent on the transfor-
mation used and closely agree with the exact solution.

4.3. Example 3: Building with tuned mass damper

It is fortuitous that real structural reliability problems with multiple design points are uncom-
mon. This in fact is the reason for the success of traditional FORM/SORM techniques. Never-
theless, multiple design points do arise in practical applications. Often it is possible to anticipate
this situation and we have selected the following problem with that in mind. It is noted, however,
that the procedure described in this paper does not require prior knowledge of the existence of
multiple design points.

Consider a 10-story building subjected to seismic motion with a tuned mass damper (TMD)
placed on its roof, as shown in Fig. 6. The building has floor masses m; and story stiffnesses k;,

6; u, 6, u,
5]
u,
it u;
2i 2
B,
1 Bl 1
B, u; B, u;

@) (b)

2
3 3]
4

Figure 5. Limit-state surfaces for Example 2: (a) transformation [Eq. (14a)]; (b) transformation [Eq. (14b)].

Table 2
Probability x 102 estimates for Example 2

Transformation u] alone u; alone uj and uj Monte Carlo

FORM SORM FORM SORM FORM SORM

(x1, x2)—(uy, u): 0.269 0.279 0.023 0.016 0.292 0.296 0.294
(x1, x2)—(uy, uz): 0.404 0.294 0.014 0.015 0.417 0.308 0.294
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i=1,...,10, and the TMD has mass m and stiffness ky. The combined system is assumed to have
modal damping ratios ¢;, i=0,1,...,10. The input motion is defined by the pseudo-acceleration
response spectrum A(7,¢)=SH({)a(T), where S is a scale factor, H({)=0.5+1.5/(40¢+1) is a
damping-dependent amplification factor suggested by Kawashima and Aizawa [7], and a(7) is the
normalized pseudo-acceleration response spectrum shape for 5% damping shown in Fig. 7.

The TMD is effective in reducing the dynamic response of the building over a narrow band of
frequencies, giving best results when its natural frequency wy = /ko/mp is perfectly tuned to the
fundamental frequency of the building, w;. As would be the case in a real situation, we assume
that the mass, stiffness, and damping properties of both the building and the TMD are uncertain.
Due to this uncertainty, perfect tuning between the TMD and the fundamental frequency of the
building may not occur. If that happens, the building response would be larger than in the case of

Building:

floor mass: m,

story stiffness: %,
modal damping ratio: ¢,

Figure 6. 10-story building with TMD.
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Figure 7. Normalized pseudo-acceleration response spectrum.
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perfect tuning. Since the TMD can be ““over-tuned” or “under-tuned,” one may expect the existence
of two design points when considering the reliability of this building.
For reliability analysis, we consider the limit-state function

g(x) = Vo ~ Voase(X), (15)

where x = (mg,m;,...,m10,k0,K 5., k10,$0, 15, 10) 15 the set of 33 random variables of the problem,
Vbase(X) is the base shear response of the building, which is expressed as an implicit function of x,
and V) is the allowable threshold. The base shear is computed by combining the modal responses
of the 11-degree-of-freedom, combined building-TMD system by the CQC rule (Der Kiureghian
[8]). For each set of x values, this involves eigenvalue analysis of the combined system, compu-
tation of the modal contributions to the base shear, and their combination by the CQC rule. For
the sake of simplicity of this application, we assume each of the 33 random variables is indepen-
dent and lognormally distributed with the mean and coefficients of variation (c.0.v.) listed in
Table 3. For the mean values listed, the fundamental (first mode) frequency of the structure and
the frequency of the TMD are identical and equal to 1.17 Hz, i.e., the mean TMD is perfectly
tuned to the first mode of the mean structure. We also assume S=0.5 and V= 1500 kips.

Starting from the mean point, an initial run of the iHL-RF algorithm for the above problem
converges to the first design point uj, denoted x] in the original space, in 6 steps with g; = 1.06.
Eigenvalue analysis with the property values at xj reveals the fundamental frequency of the
building as 1.15Hz and the TMD frequency as 1.33 Hz. This corresponds to a case where the
TMD is “over-tuned.” Next, a bulge is added at u} and the iHL-RF algorithm is applied again
with the initial point selected according to the rule Eq. (9) with e=0.5. Convergence is achieved
to the second design point u} (x5 in the original space) in 71 steps with 8,=1.71. Examination of
the angle and distance between uj and u} reveals that u} is indeed a legitimate design point.
Eigenvalue analysis with the properties at x5 reveals the fundamental frequency of the building as
1.20Hz and the TMD frequency as 1.03Hz. This corresponds to a case where the TMD is
“under-tuned.” Further investigation with a bulge added at u} reveals no other genuine design
point.

Table 4 summarizes the estimates of the probability of failure (i.e., the base shear response
exceeding V) based on FORM and SORM using either or both design points. These are com-
pared with a Monte Carlo solution listed in the last column, which is based on 2000 simulations.
Accounting for both design points is found to significantly improve the failure probability esti-
mate.

Table 3

Mean and coefficient of variation of random variables

Variable Mean C.0.v.
my,...,mg 193 kips/g 0.20
kl,...,kl() 1200 klpS/lI‘l 0.20
my 158 kips/g 0.20
ko 22 kips/in 0.20

£0:815--5810 0.05 0.30
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Table 4
Probability estimates for building with tuned mass damper
o alone u; alone uj and u; o Monte Carlo
FORM SORM ;0715\;{ N SORrM FORM SORM
0.145 0.161 0.044 0.058 0.188 0.218 0.213

5. Summary and conclusion

The existence of multiple design points in component reliability analysis could give rise to large
errors in FORM and SORM approximations of the failure probability. In this paper, a method is
developed to successively find the multiple design points of a reliability problem, when they exist.
FORM or SORM approximations at each design point followed by a series system reliability
analysis is shown to lead to improved estimates of the failure probability. The method can also be
used to ascertain that a design point found is truly the global design point. Example applications
show the generality and robustness of the method.
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