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a b s t r a c t

This article is the third in a series dedicated to themathematical study of isoprobabilistic transformations
and their relationship with stochastic dependence modelling, see [R. Lebrun, A. Dutfoy, An innovating
analysis of the Nataf transformation from the viewpoint of copula, Probabilistic Engineering Mechanics
(2008). doi: 10.1016/j.probengmech.2008.08.001] for an interpretation of the Nataf transformation
in term of normal copula and [R. Lebrun, A. Dutfoy, A generalization of the Nataf transformation
to distributions with elliptical copula, Probabilistic Engineering Mechanics (24) (2009), 172–178.
doi:10.1016/j.probengmech.2008.05.001] for a generalisation of the Nataf transformation to any elliptical
copula.
In this article, we explore the relationship between two isoprobabilistic transformations widely used

in the community of reliability analysts, namely the Generalised Nataf transformation and Rosenblatt
transformation.
First, we recall the elementary results of the copula theory that are needed in the remaining of the

article, as a preliminary section to the presentation of both the Generalized Nataf transformation and the
Rosenblatt transformation in the light of the copula theory.
Then, we show that the Rosenblatt transformation using the canonical order of conditioning is

identical to the Generalised Nataf transformation in the normal copula case, which is the most usual
case in reliability analysis since it corresponds to the classical Nataf transformation. At this step, we also
show that it is not possible to extend the Rosenblatt transformation to distributionswith general elliptical
copula the way the Nataf transformation has been generalised.
Furthermore, we explore the effect of the conditioning order of the Rosenblatt transformation on

the usual reliability indicators obtained from a FORM or SORM method. We show that in the normal
copula case, all these reliability indicators, excepted the importance factors, are unchanged whatever the
conditioning order one chooses.
In the last section, we conclude the article with two numerical applications that illustrate the previous

results: the equivalence between both transformations in the normal copula case, and the effect of the
conditioning order in the normal and non-normal copula case.

© 2009 Published by Elsevier Ltd
1. Introduction

In reliability analysis, the uncertainty related to the input
variables is modelled with a multivariate probability distribution
that defines a random vector X of dimension n. We suppose in
this article that this distribution is absolutely continuous and thus
admit a joint density function. These distributions are propagated
through a physical model f to compute the distribution of the
output variable Y . Stakeholders aim at taking a decision on the
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basis of the realisation of criteria,whichmaybe the probability that
the output variable overpasses a given threshold.
The evaluation of this probability might require a high num-

ber of simulations, which might forbid the use of simulation algo-
rithms, particularly if the physical model has a high computational
cost.
That is why an alternative to the simulation methods has been

developed, based on an isoprobabilistic transformation that maps
the physical space into a new space called the standard space. In
that space, the evaluation of the probability can be done using
cheap approximations such as the FORM or SORM approximations.
Two isoprobabilistic transformations are presented in the

literature: the Nataf transformation [1,12] which has been
extended into a Generalised Nataf transformation [2] and the
Rosenblatt transformation [3].
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The main objective of this article is to compare the Generalized
Nataf transformation with the Rosenblatt one and to prove that
they are identical in the normal copula case, which is the most
common case in actual reliability studies as it corresponds to the
use of the classical Nataf transformation.
We also study the possibility to modify the Rosenblatt

transformation in a similar way that the Nataf transformation has
been extended to lead to a non-normal standard space.
The second objective of this article is to study the impact of the

conditioning order of the Rosenblatt transformation on the usual
reliability indicators obtained after an analytical FORM/SORM
method, with a focus on the normal copula case.
We note FXk the k-th univariate marginal cumulative distribu-

tion function of the randomvectorX and CX its copula.Wenote FX1,k
the cumulative distribution function of the sub-vector (X1, . . . , Xk)
of X and CX1,k its copula.
When no confusion is possible, we remove the superscript in order
to ease the reading: FXk and C

X become Fk and C .
Furthermore, we note CNR is a normal copula whose correlation

matrix is R . We suppose that R is a symmetric positive definite
matrix.
We noteMn,n(R) the set of a real square matrix of dimension n,

On(R) the subset of orthogonal matrices ofMn,n(R), i.e:

∀Q ∈ On(R), Q Q t = I
n

(1)

and GLn(R) the subset of invertible matrices ofMn,n(R).
If R = (rij)1≤i,j≤n ∈ Mn,n(R), then R k is its k-leading sub-block:

R
k
= (rij)1≤i,j≤k (2)

and Rk is the (k+ 1)-th partial column vector:

Rk = (r1,k+1, . . . , rk,k+1)t . (3)

We call standard space the image space of an isoprobabilistic
transformation.

2. Elementary results on copula

In this section, we recall some basic results of the theory of
copulas. We restrict ourselves to the strict minimum to follow
further developments. The interested reader is invited to consult
e.g. [4] for a thorough introduction to the theory of copulas,
including a demonstration of the results presented here.
The following theorem links the joint cumulative distribution

function of a multivariate distribution to a copula:

Theorem 1 (Sklar, 1959). Let F be a cumulative distribution function
of dimension n whose univariate marginal cumulative distribution
functions are Fi. It exists a copula C of dimension n such that for
x ∈ Rn, we have:

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (4)

If the marginal distributions Fi are continuous, the copula C is unique;
otherwise, it is uniquely determined on Range(F1)×· · ·×Range(Fn).
In the case of continuousmarginal distributions, for all u ∈ [0, 1]n,

we have:

C(u) = F
(
F−11 (u1), . . . , F−1n (un)

)
. (5)

The copula is unchanged under almost strictly increasing
marginal transformation:

Proposition 2. If X has as a copula C and if (α1, . . . , αn) are
n almost strictly increasing functions defined respectively on the
supports of the Xi, then C is also the copula of (α1(X1), . . . , αn(Xn)).
If we are interested in the distribution of the sub-vector
(X1, . . . , Xk) of the random vector X , we have the following
property:

Proposition 3 (k-dimensional Marginal Distributions). Let X be
a continuous random vector with a distribution defined by its
copula C and its marginal cumulative distribution functions Fi. The
cumulative distribution function F1,k of the k-dimensional random
vector (X1, . . . , Xk) is defined by its marginal distributions Fi and the
copula C1,k through the relation:

F1,k(x1, . . . , xk) = C1,k(F1(x1), . . . , Fk(xk)) (6)

with

C1,k(u1, . . . , uk) = C(u1, . . . , uk, 1, . . . , 1). (7)

Definition 4 (k-th Conditional Marginal Distribution). Let X =
(X1, . . . , Xn) be a continuous random vector. The cumulative
distribution function of the conditional variable Xk|X1, . . . , Xk−1 is
defined by:

Fk|1,...,k−1(xk|x1, . . . , xk−1)

=
∂k−1F1,k(x1, . . . , xk)
∂x1 · · · ∂xk−1

/
∂k−1F1,k−1(x1, . . . , xk−1)

∂x1 · · · ∂xk−1
. (8)

Proposition 5 (k-th Conditional Marginal Copula). Let X be a
continuous random vector with a distribution defined by its copula C
and its marginal cumulative distribution functions Fi. The cumulative
distribution function of the conditional variable Xk|X1, . . . , Xk−1 is
defined by its marginal distributions Fi and the copula Ck|1,...,k−1
through the relation:

Fk|1,...,k−1(xk|x1, . . . , xk−1)

= Ck|1,...,k−1(Fk(xk)|F1(x1), . . . , Fk−1(xk−1)) (9)

with

Ck|1,...,k−1(uk|u1, . . . , uk−1)

=
∂k−1C1,k(u1, . . . , uk)

∂u1 · · · ∂uk−1

/
∂k−1C1,k−1(u1, . . . , uk−1)

∂u1 · · · ∂uk−1
. (10)

As a matter of fact, relation (10) is the direct application
of Definition 4 to the cumulative distribution C . Furthermore,
Definition 4 and relation (4) lead to:

Fk|1,...,k−1(xk|x1, . . . , xk−1)

=

[
i=k−1∏
i=1

pi(xi)

]
∂k−1C1,k(F1(x1), . . . , Fk(xk))

∂u1 · · · ∂uk−1

/

· · ·

[
i=k−1∏
i=1

pi(xi)

]
∂k−1C1,k−1(F1(x1), . . . , Fk(xk−1))

∂u1 · · · ∂uk−1
(11)

where pi is the probability density function of Xi.
Relations (11) and (10) lead to relation (9).

3. The Generalised Nataf and Rosenblatt transformations

The Nataf transformation [1] has been introduced as a
procedure to transform the univariate marginal distributions
of a multivariate marginal distribution. Its usage in reliability
analysis has been popularised by several authors, see e.g. [5,6].
By the way, the Nataf transformation has been presented as
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a way to perform reliability computations using incomplete
dependence information, and it is only recently that its role as a
probabilistic modelling tool has been emphasised, linked to the
copula theory [7]: the traditional usage of the Nataf transformation
supposes that the random vector X has a normal copula. A
generalisation to random vectors with any elliptical copulas has
been proposed in [2], and this is the generalisation which is
recalled here:

Definition 6 (Generalised Nataf Transformation). Let X in Rn be
a continuous random vector defined by its univariate marginal
cumulative distribution functions FXi and its elliptical copula
CX , characterized by its generator ψ . The Generalised Nataf
transformation TGN is defined by:

U = TGN(X) = TGN2 ◦ T
GN
1 (X) (12)

where both transformations TGN1 and TGN2 are given by:

TGN1 : R
n
→ Rn

X 7→ W =

E−1 ◦ FX1 (X1)· · ·

E−1 ◦ FXn (Xn)


TGN2 : R

n
→ Rn

W 7→ U = Γ W

(13)

where E is the cumulative distribution function of univariate
standard elliptical distributionwith characteristic generatorψ and
Γ is the inverse of the Cholesky factor of R .

Another widely used isoprobabilistic transformation is the
Rosenblatt transformation [3], defined by:

Definition 7 (Rosenblatt Transformation). Let X in Rn be a contin-
uous random vector defined by its univariate marginal cumulative
distribution functions FXi and its copula C

X . The Rosenblatt trans-
formation T R of X is defined by:

U = T R(X) = T R2 ◦ T
R
1 (X) (14)

where both transformations T R1 , and T
R
2 are given by:

T R1 : R
n
→ Rn

X 7→ Y =



FX1 (X1)
...

FXk|1,...,k−1(Xk|X1, . . . , Xk−1)
...

FXn|1,...,n−1(Xn|X1, . . . , Xn−1)


T R2 : R

n
→ Rn

Y 7→ U =

Φ
−1(Y1)
...

Φ−1(Yn)



(15)

where FXk|1,...,k−1 is the cumulative distribution function of the
conditional random variable Xk|X1, . . . , Xk−1.

Let us note that T R1 maps X into a uniformly distributed
random vector over [0, 1]n with independent copula. For the
demonstration, see [5, chap.7̃.2, p. 123].
Furthermore, T R2 maps Y into a normally distributed random

vector with zero mean and unit covariance matrix: as a mater
of fact, Proposition 2 implies that U has the same copula as Y .
Besides, by construction, the univariate marginal distributions of
U are standard normal.
In order to ease the further comparison between the gener-
alised Nataf transformation and the Rosenblatt one, it is useful to
rewrite the Rosenblatt transformation as follows:

Definition 8 (Rosenblatt Transformation, New Formulation). Let X
in Rn be a continuous random vector defined by its univariate
marginal cumulative distribution functions FXi and its copula C

X .
The new formulation of the Rosenblatt transformation TNR is defined
by:

U = TNR(X) = T R ◦ T0(X) (16)

where T0 is given by:

T0 : Rn → Rn

X 7→ W =

Φ−1 ◦ FX1 (X1)· · ·

Φ−1 ◦ FXn (Xn)

 (17)

where Φ is the cumulative distribution function of the univariate
standard normal distribution, T R the Rosenblatt transformation of
Definition 7.

Let us note that UNR = TNR(X) = T R2 ◦ T
R
1 ◦ T0(X).

If W = T0(X), then, thanks to (15), the kth component of UNR
writes:

UNRk = Φ
−1
◦ FWk|1,...,k−1(Wk|W1, . . . ,Wk−1). (18)

Thanks to Proposition 5, the cumulative distribution function of
the conditional variableWk|W1, . . . ,Wk−1 writes:

FWk|1,...,k−1(wk|w1, . . . , wk−1)

= CWk|1,...,k−1
(
FWk (wk)|F

W
1 (w1), . . . , F

W
k−1(wk−1)

)
. (19)

From Proposition 2, it follows that X and W have the same
copula CX . Furthermore, by construction of W , we have FWk = Φ

andΦ(Wk) = F
X
k (Xk). Then, relation (19) rewrites:

FWk|1,...,k−1(Wk|W1, . . . ,Wk−1)

= CXk|1,...,k−1
(
FXk (Xk)|F

X
1 (X1), . . . , F

X
k−1(Xk−1)

)
(20)

which finally leads to the relation:

FWk|1,...,k−1(Wk|W1, . . . ,Wk−1) = F
X
k|1,...,k−1(Xk|X1, . . . , Xk−1) (21)

and then to:

UNRk = Φ
−1
◦ FXk|1,...,k−1(Xk|X1, . . . , Xk−1) (22)

which is precisely the expression of the Rosenblatt transformation
of Definition 7:

UNR = T R(X).

4. Do generalised Nataf and Rosenblatt transformations really
differ?

In this section, we first consider the case where the copula of X
is normal, which is the most usual case in reliability analysis since
it corresponds to the case where the classical Nataf transformation
applies.
Then, we make the comparison in all the other cases: non-normal
elliptical copulas and non-elliptical copulas.

4.1. The normal copula case

The new formulation (16) of the Rosenblatt transformation
makes it easier to show that when X has a normal copula, both
transformations are identical:
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Proposition 9 (Isoprobabilistic Transformations, Normal Copula). Let
X in Rn be a continuous random vector defined by its univariate
marginal cumulative distribution functions FXi and its normal copula
CNR . Then, the Rosenblatt transformation and the generalised Nataf one
are identical:

T R(X) = TGN(X). (23)

We recall without demonstration some well-known results
about normal vectors and an easy-to demonstrate result on
orthogonal matrices that will be used in the demonstration of
Proposition 9.

Proposition 10 (Conditional Normal Vector). Let U = (X1, X2)
t

in Rn1+n2 be a normal random vector. Then the conditional random
vector V = X2|X1 is a normal vector which mean vector and
covariance matrix are defined by:{
E[V ] = E[X2] + Cov (X2, X1)[Cov (X1, X1)]

−1(X1 − E[X1])
Cov (V ) = Cov (X2, X2)− Cov (X2, X1)[Cov (X1, X1)]

−1Cov (X1, X2).

(24)

Proposition 11 (Affine Transformation). Let X in Rn be a normal
vector, with mean vector is µ, and covariance matrix Σ , A a
deterministic matrix in Mn,p(R) and b in Rp a deterministic vector.
Then Y = A X + b is a normal vector whose mean vector and
covariance matrix are defined by:{
E[Y ] = A µ+ b
Cov (Y ) = A Σ A t . (25)

Proposition 12 (Orthogonal Triangular Matrix with Positive Diago-
nal). Let T +(R) be the set of lower triangular matrix of Mn,n(R)with
positive diagonal elements. Then T +(R) is a multiplicative subgroup
of GLn(R).
Furthermore, T +(R) ∩ On(R) = {I n}.

We can now start to demonstrate Proposition 9, using the
new formulation of the Rosenblatt transformation of Definition 8,
whose different steps are the following ones:

TNR : X
T0
7−→ W

TR1
7−→ Y

TR2
7−→ U . (26)

Let us note Sk−1 = (W1, . . . ,Wk−1)
t and Vk = Wk|Sk−1.

As X has a normal copula, W is a n-dimensional normal vector
whose univariate marginal distributions are standard normal and
which correlation matrix is R .
Proposition 10 gives that for all k, Vk follows a univariate normal

distribution and relation (24) leads to:

E[Vk] = E[Wk] + Cov (Wk, Sk−1)[Cov (Sk−1, Sk−1)]
−1(Sk−1 − E[Sk−1])

= Cov (Wk, Sk−1)[Cov (Sk−1, Sk−1)]
−1Sk−1. (27)

Besides, we have Cov (W ) = Cor (W ) = R , and given the
notations (2) and (3), we have:

E[Vk] =
(
Rk−1

)t
[R
k−1
]
−1Sk−1. (28)

Furthermore, relation (24) also leads to:

Var[Vk] = Var(Wk)− Cov (Wk, Sk−1)[Cov (Sk−1, Sk−1)]
−1

× Cov (Sk−1,Wk)

= 1−
(
Rk−1

)t
[R
k−1
]
−1Rk−1. (29)

Given relations (28) and (29), the kth component of Y is defined
by:
Yk = F
W
k|1,...,k−1(Wk|W1, . . . ,Wk−1)

= Φ

Wk − (Rk−1)t [R k−1]−1Sk−1√
1−

(
Rk−1

)t
[R
k−1
]−1Rk−1

 . (30)

Finally, we obtain:

Uk = Φ−1(Yk) =
Wk −

(
Rk−1

)t
[R
k−1
]
−1Sk−1√

1−
(
Rk−1

)t
[R
k−1
]−1Rk−1

= A
k
W (31)

where for all k ∈ [1, n], A
k
= (ak,1, . . . , ak,k, 0, . . . , 0) ∈ M1n(R)

with:
ak,k =

[√
1−

(
Rk−1

)t
[R
k−1
]−1Rk−1

]−1
ak,j = −ak,k

i=k−1∑
i=1

r1irji for ∀j ∈ [1, k− 1].
(32)

As A
k
is a rowmatrix,Uk only depends on Sk. Let Γ̃ be the lower

triangularmatrixwhich line k isA
k
. Then relation (31) implies that:

U = Γ̃ W (33)

which is very close to relation (13). It remains to show that Γ̃ =
Γ .

Proposition 11 implies that Cov (U) = Γ̃ R Γ̃
t
and Cov (U) =

I
n
by construction of U . If L is the Cholesky factor of R , then R =

L L t , and (Γ̃ L )(Γ̃ L )t = I
n
, which leads to Γ̃ L ∈ On(R).

Furthermore, by construction, Γ̃ ∈ T +∗(R). As L ∈ T +∗(R),
Proposition 12 implies that Γ̃ L ∈ T +∗(R) and Γ̃ L = I

n
, which

rewrites Γ̃ = L −1 = Γ .
In conclusion, we showed that in the case where X has a normal

copula, we have the relation T R2 ◦ T
R
1 ◦ T0(X) = T

N
2 ◦ T

N
1 (X) which

leads to:

T R(X) = TN(X). (34)

Thus, the equivalence of the Rosenblatt transformation and the
Generalised Nataf transformation in the normal copula case is
shown.

4.2. The other cases

In the case where the copula of X is elliptical but non-normal,
both isoprobabilistic transformations differ as their associated
standard spaces are different. As a matter of fact, the standard
spaces of the Generalised Nataf is associated with the standard
spherical representative of the elliptical family that defines the
elliptical copula, whereas the standard space of the Rosenblatt
transformation is associated to the normal distribution.
At this step, it is interesting to check whether it is possible to

modify the Rosenblatt transformation in order tomake its standard
space be the same as the one associated with the generalised Nataf
transformation.
In [7] we recall that the essential characteristic of the standard

space is the spherical symmetry of its associated distribution,
which gives a sense to the FORM and SORM approximations of the
event probability.
Let us note that by construction, because of the conditioning step
T R1 , the Rosenblatt transformation leads to a final vector U with an
independent copula.
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Fig. 1. Rosenblatt transformations when the conditioning of the components Wk
follow the canonical order or an arbitrary order.

Proposition 13 (Spherical Distributionwith Independent Copula). The
only spherical distributions with independent components are the
normal distributionswith zeromean and scalar covariancematrixλI

n
with λ > 0.

See [8] for a demonstration.
Thus, the only way to map a random vector with an

independent copula into a random vector following a spherical
distribution, is to map it into a normal vector such as described
in this proposition: thus, the standard space of the Rosenblatt
transformation is necessarily the normal one.
Therefore, the standard space of the Rosenblatt transformation and
the standard space of the Generalised Nataf transformation only
coincide in the normal copula case.
At last, for all the other cases where the copula of X is not

elliptical, the Generalised Nataf transformation is not defined and
the comparison with the Rosenblatt transformation not possible.

5. Impact of the conditioning order in the Rosenblatt transfor-
mation in the normal copula case

In the literature [5], the presentation of the Rosenblatt
transformation is given with the warning that the conditioning
order in step T R1 has an impact on the results obtained from a
FORM/SORMmethod.
Let us call canonical order the order presented in the relation (15).
In that section, we study the impact of a change in the

conditioning order of the Rosenblatt transformation on the
quantities evaluated in the context of the use of the FORM or
SORM methods: the design point, which is used through its
norm (reliability index) and its normalised squared coordinates
(importance factors), and the curvatures of the limit state surface at
the designpoint in the standard space,where the limit state surface
is the frontier of the subspace of parameters verifying the event (for
SORM approximation).
In the case where the copula of X is not normal, it has already

been shown that such a change has an impact on all these
elements: see the example quoted by [9] and discussed by several
authors, for example [5] and [10].
However, this is not always the case. We will study in more

detail the most frequent situation where the copula of X is normal
since, as mentioned previously, it is the copula induced by the use
of the classical Nataf transformation.
Let us suppose now that we change the order of conditioning.

It is equivalent to consider the introduction of a new step in the
Rosenblatt transformation between the steps T0 and T R1 of relation
(26) in order to make a permutation of the components ofW . We
note P the permutation matrix such asW 2 = P W .
The Rosenblatt transformations using the canonical order or an

arbitrary order are summarised graphically in Fig. 1.
We have the following result:

Proposition 14 (Impact of the Order of Conditioning, Normal
Copula). In the normal copula case, changing the order of the
conditioning in the Rosenblatt transformation consists in making an
orthogonal transformation in the standard space of the Rosenblatt
transformation.
More precisely, if we note P the permutation matrix associated to the
arbitrary order, T R2 the Rosenblatt transformation associated to this
ordering, U2 = T

R
2 (X) and U = T

R(X), then we have:

∃Q ∈ On(R) /U2 = Q U (35)

where Q and P are in the same connected component of On(R), it
means det P = detQ .
According to the notations of Fig. 1, if R is the correlation matrix

of the normal copula of X, R
2
the one of W 2, Γ and Γ 2

the inverse
of their respective Cholesky factors, then the matrices P and Q are
linked by:

Q = Γ
2
P Γ −1. (36)

The following result will help for the demonstration of
Proposition 14:

Proposition 15 (Triangular Decomposition). Let A and B be two
deterministic matrices inMn,n(R), with B invertible. Then we have:

A A t = B B t H⇒ B −1 A ∈ On(R) (37)

which means that ∃Q ∈ On(R) / A = B Q .

As a matter of fact, we have the following implications:

(B −1 A )(B −1 A )t = B −1 A A t B −t = B −1 B B t B −t = I
n

(38)

which leads to the result of Proposition 15.
AsW 2 = P W ,W 2 is a normal vector which correlation matrix

verifies R
2
= P R P t and which Cholesky factor is L

2
= Γ −1

2
.

Therefore, R
2
= L

2
L
2
t
= (P L )(P L )t . Proposition 15 leads to:

∃Q ∈ On(R) / P L = L 2 Q . (39)

By multiplying the relation (39) on the left by Γ
2
and on the

right by Γ , it rewrites:

Γ
2
P = Q Γ (40)

which leads to the relation between P andQ given in relation (36).
We showed that in the normal copula case, the mapping from

W 2 into U2 is linear such as: U2 = Γ 2
W 2. Finally, we obtain:

U2 = Γ 2
P W . (41)

Relations (40) and (41) finally imply that:

U2 = Q Γ W = Q U (42)

as required.
Given that det(Γ ) > 0 and det(Γ

2
) > 0, relation (36) implies

that det(Q ) and det(P ) have the same sign, which signifies that
they belong to the same connected component of On(R).
In conclusion, if the random vector X has a normal copula,

the effect of changing the order of conditioning in the Rosenblatt
transformation with respect to the canonical order is to apply a
further orthogonal transformation after applying the Rosenblatt
transformation associated to the canonical ordering. It changes the
location of the design point, therefore its coordinates, but neither
its norm nor the curvatures of the limit state surface at the design
point.
Thus, in the context of the FORM or SORM method, the following
quantities do not depend on the conditioning order of the
Rosenblatt transformation:



582 R. Lebrun, A. Dutfoy / Probabilistic Engineering Mechanics 24 (2009) 577–584
• the Hasofer reliability index [11], which is the norm of the
design point,
• the FORM approximation of the event probability which relies
only on the Hasofer reliability index,
• the SORM approximations of the event probability which rely
on both the Hasofer reliability index and the curvatures of the
limit state function at the design point.

However, the importance factors which are evaluated from the
normalised squared coordinates of the design point change in a
way which is not in general a permutation of the values obtained
using the canonical order: relation (36) implies that in general,
Q 6= P .

To be more precise, let us consider the following proposition:

Proposition 16 (Ordering Indifference). (∀ permutation matrix P ,Q
= P )⇐⇒ (X has an independent copula.)

The first implication is obvious: if X has an independent copula,
the correlation matrix R is equal to the identity matrix I

n
, which

implies that R
2
= I

n
, Γ = I

n
, Γ

2
= I

n
and finally Q = P .

The second implication derives from the following computation.
By definition of Γ

2
and Γ , we have:

Q = P H⇒ L
2
= P L P t (43)

which implies the following relation on the coefficients of L
2
=

(l2i,j)1≤i,j≤n and L = (li,j)1≤i,j≤n:

l2i,j = lσ(i),σ (j) (44)

where σ is the permutation associated to P .
Thus, given that L and L

2
are lower triangular matrices, if the

relation (44) must hold for all the permutations σ , it must hold
in particular for any transposition τij that exchanges i and j, thus
if i < j, l2i,j = 0 by construction, thus lσ(i),σ (j) = lji = 0: L is
a diagonal matrix and consequently, R = I , which is equivalent
to the independence of the components of X in the normal copula
case.
In conclusion, a permutation with respect to the canonical

order on the components of X always corresponds to the same
permutationwith respect to the canonical order of the components
of the standard space random vector only on the independent case.
Otherwise, the choice of the conditioning order does not translate
into a simple permutation of the values of the design point
coordinates. This remark re-enforces the fact that it is difficult to
interpret the importance factors on a component basis in the case
of correlated variables.

Remark 17. A similar questionmay be raised concerning theNataf
transformation, namely the choice of Γ , which is by no way
restricted to the Cholesky factor for the standard space to be
associated with a spherical distribution: any square root of the
correlation matrix would suit. In particular, if P is a permutation
matrix (and more generally any orthogonal matrix), L P is such a
square root.

Let us recall that the exact value of the event probability
remains unchanged whatever the transformation we use, and
whatever the conditioning order we use for the Rosenblatt
transformation!
6. Numerical applications

In this section, we illustrate the results obtained in the previous
sections through two numerical applications.
We consider a bi-dimensional random vector X = (X1, X2) defined
by its marginal cumulative distribution functions (F1, F2) and its
copula C .
For both applications, we choose exponential distributions X1 ∼
Exp(λ1) and X2 ∼ Exp(λ2) for the marginal distributions and a
limit state surface defined by:

8X1 + 2X2 − 1 = 0. (45)

We consider the event:

8X1 + 2X2 − 1 ≤ 0 (46)

which we want to evaluate the probability.
In the first application, we choose a normal copula CNR where

R =
(
1 ρ
ρ 1

)
and ρ the correlation coefficient.

We check both the equivalence between the canonical Rosenblatt
transformation and the Generalised Nataf transformation, and the
effect of a change in the conditioning order.
In the second application, we choose non-elliptical copula,

namely the Frank copula Cθ , which belongs to the class of
archimedean copulas, and we verify that a change in the
conditioning order is not equivalent to an orthogonal modification
of the transformation and has an impact on the FORM and SORM
approximations.
We recall that the Frank copula is defined on [0, 1]2 by the

expression:

Cθ (u1, u2) = −
1
θ
log

(
1+

(e−θu1 − 1)(e−θu2 − 1)
e−θ − 1

)
(47)

where θ ∈ R∗. For θ = 0, Cθ is the independent copula.
In the numerical applications, we take λ1 = 1, λ2 = 3, ρ = 1/2

and θ = 10.

6.1. Application 1: Normal copula

We use the new expression of the Rosenblatt transformation
of Definition 8, with the previous notation W = T0(X), in that
particular case of normal copula.
Given Proposition 10, W2|W1 is a normal random vector such as
E[W2|W1] = ρW1 and Var[W2|W1] = 1 − ρ2, which implies that

FW2|W1(W2|W1) = Φ
(
W2−ρW1√
1−ρ2

)
.

Finally, the random vector U is defined by:
U1 = Φ−1 ◦ FW1(W1) = W1

U2 = Φ−1 ◦ FW2|W1(W2|W1) =
W2 − ρW1√
1− ρ2

.
(48)

The Rosenblatt transformation with canonical order on the
conditioning step finally defines the normal random vector U as:
U1 = Φ−1 ◦ F 1(X1)

U2 =
Φ−1 ◦ F 2(X2)− ρΦ−1 ◦ F 1(X1)√

1− ρ2
.

(49)

In the Rosenblatt standard space, the limit state surface has the
parametric expression, where ξ ∈ [0,+∞[:
u1 = Φ−1 ◦ F 1(ξ)

u2 =
Φ−1 ◦ F 2

(
1−8ξ
2

)
− ρΦ−1 ◦ F 1(ξ)√

1− ρ2
.

(50)
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Limit State Surface in Standard Space
through Rosenblatt Transformations

Canonical order
Design point
Inverse order
Design point

u1

u2
–

4
–2

0
2

4

–4 –2 0 42

Fig. 2. Transformations of the limit state surface into the standard space when
using the canonical order in the Rosenblatt transformation and its inverse. The
linear correlation is ρ = 1/2, the copula is normal, X1 ∼ Exp(1) and X2 ∼ Exp(3).
The limit state surface is 8X1+2X2−1 = 0. Note the symmetry that exchanges the
two curves: its matrix is Q .

With the same considerations, the Rosenblatt transformation
with the inverse order on the conditioning step defines the normal
random vector Ũ as:
Ũ1 = Φ−1 ◦ F 2(X2)

Ũ2 =
Φ−1 ◦ F 1(X1)− ρΦ−1 ◦ F 2(X2)√

1− ρ2
(51)

which leads, in the standard space, to the other expression of the
limit state surface:
ũ1 = Φ−1 ◦ F 2

(
1− 8ξ
2

)
ũ2 =

Φ−1 ◦ F 1(ξ)− ρΦ−1 ◦ F 2
(
1−8ξ
2

)
√
1− ρ2

.

(52)

Fig. 2 draws the graph of the limit state surface in the standard
space after both Rosenblatt transformations.
Thanks to relation (36), we can define the orthogonal matrix Q .

The permutation matrix is P =
(
0 1
1 0

)
which leads to R

2
= R .

Furthermore, we have

Γ = Γ
2
=

 1 0
−ρ√
1− ρ2

1√
1− ρ2


and finally

Q =

(
ρ

√
1− ρ2√

1− ρ2 −ρ

)
.

We can easily verify that Ũ = Q U . Furthermore, Q is a
permutation matrix with det(Q ) = −1, as the matrix P .

The director vector of the symmetry axis is
(√

1+ρ
2 ,

√
1−ρ
2

)
. In

the numerical application drawn in Fig. 2, the symmetry axis is
(
√
3/2, 1/2).
Canonical order
design point
Inverse order
design point

Limit State Surface in Standard Space
through Rosenblatt transformations
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Fig. 3. Transformations of the limit state surface into the standard space when
using the canonical order in the Rosenblatt transformation and its inverse. The
copula is a Frank one with θ = 10, X1 ∼ Exp(1) and X2 ∼ Exp(3). The limit state
surface is 8X1 + 2X2 − 1 = 0.

The Hasofer reliability index is β = 1.30 and the FORM approx-
imation of the event probability p = P(8X1 + 2X2 − 1 < 0) is:

pFORM = Φ−1(−β) = 9.76× 10−2. (53)

An analytical computation of p leads to the numerical result:

p = 8.73× 10−2 (54)

Let us verify now the equivalence between the Nataf transfor-
mation and the Rosenblatt one (given that we consider the canon-
ical order). The Nataf transformation leads to the normal random
vector U defined as:

U = Γ
(
Φ−1 ◦ F 1(X1)
Φ−1 ◦ F 2(X2)

)
(55)

As Γ =

(
1 0

−
ρ√
1− ρ2

1√
1− ρ2

)
, we have:


U1 = Φ−1 ◦ F 1(X1)

U2 = −
ρΦ−1 ◦ F 1(X1)√

1− ρ2
+
Φ−1 ◦ F 2(X2)√
1− ρ2

(56)

which is identical to the expression defined in (49).

6.2. Application 2: Frank copula

We consider here the Frank copula, which is a non-elliptical
copula. This example proves that both limit state surfaces in
the standard space associated to two different orders in the
conditioning step of the Rosenblatt transformation are not linked
by an orthogonal transformation.We also illustrate that, according
to this conditioning order, both reliability index are differentwhich
leads to different FORM approximations of the probability.
Fig. 3 draws the graph of the limit state function in the standard

space after both Rosenblatt transformations.
The respective reliability index are different in both cases:{
βCanOrd = 1.24
βInvOrd = 1.17

(57)
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which leads to different FORM approximations of the event
probability:{
PFORMCanOrd = 1.07× 10

−1

PFORMInvOrd = 1.22× 10
−1.

(58)

There is a difference of 14% between the two approximations, only
due to the conditioning order, whereas the exact probability value
is the same.
An analytical computation of p leads to the numerical value:

p = 1.038× 10−1. (59)

7. Conclusion

This article is the third part of global reflections on isoproba-
bilistic transformations.
Its first main objective was to compare the generalised Nataf

transformation with the Rosenblatt transformation and show that
in the normal copula case, both transformations are identical.
In the use of the Rosenblatt transformation, there is a degree

of freedom in the ordering of the conditioning step. This point is
often presented as a drawback of this transformation, as it leads to
different numerical results for the FORMandSORMapproximation.
The secondmain objective of the articlewas to show that, although
the conditioning order has such an impact in general, in the normal
copula case there is indeed no impact on the FORM and SORM
approximations as well as on the reliability index. The only impact
is on the importance factors in the case of correlated components
for X , which underlines the difficulty in interpreting such factors
in the correlated case.
The Nataf transformation has been successfully generalised

to produce more general standard spaces than the normal
one. We showed that the Rosenblatt transformation cannot
be generalised this way. Thus, for the case of a non-normal
elliptical copula, one can choose between both isoprobabilistic
transformations: the Rosenblatt transformation or the generalised
Nataf transformation.
We illustrated these results through two numerical applica-

tions, showing the equivalence of both transformations in the nor-
mal copula case and the effect of the conditioning order in a normal
and non-normal copula case.
Let us recall that the exact value of the event probability

remains the same whatever the transformation we use, and
whatever the conditioning order we use for the Rosenblatt
transformation. It is only the FORMand SORMapproximations that
are potentially modified.
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