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of Stationary Vector ARMA Models 

Jose Alberto MAURICIO* 

The problems of evaluating and subsequently maximizing the exact likelihood function of vector autoregressive moving average 
(ARMA) models are considered separately. A new and efficient procedure for evaluating the exact likelihood function is presented. 
This method puts together a set of useful features that can only be found separately in currently available algorithms. A procedure 
for maximizing the exact likelihood function, which takes full advantage ofthe properties offered by the evaluation algorithm, is also 
considered. Combining these two procedures, a new algorithm for exact maximum likelihood estimation of vector ARMA models 
is obtained. Comparisons with existing procedures, in terms of both analytical arguments and a numerical example, are given to 
show that the new estimation algorithm performs at least as well as existing ones, and that relevant real situations occur in which it 
does better. 
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1. INTRODUCTION 

This article proposes a new procedure for exact maximum 
likelihood estimation of vector autoregressive moving av- 
erage (ARMA) models. A sharp distinction between eval- 
uating and maximizing the likelihood function is made. This 
permits a detailed analysis of all problems that arise in the 
estimation process. The solutions obtained through this 
analysis can then be integrated into a complete estimation 
procedure that takes advantage of some properties of the 
likelihood function that have not been fully exploited in pre- 
vious papers. 

Although there has been abundant research on evaluating 
the likelihood function of vector ARMA models (see, for 
example, Hall and Nicholls 1980; Hillmer and Tiao 1979; 
Nicholls and Hall 1979; and Shea 1987 ) , only a few authors 
have paid attention to the problem of its subsequent max- 
imization. Furthermore, such attention has usually been re- 
stricted to suggesting, in a few lines, the use of a standard 
optimization algorithm to maximize the likelihood function, 
evaluated as extensively described in the just-cited papers. 
An interesting exception was provided by Shea ( 1984, pp. 

With regard to the computation of the likelihood function, 
none of the existing methods can be considered fully satis- 
factory. This is due to the fact that many of the necessary 
properties of a method for evaluating the likelihood function 
are scattered among the existing procedures. Thus, although 
each of many existing algorithms has some useful properties, 
it also lacks other properties that can be found in alternative 
procedures. 
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For instance, the algorithm of Shea ( 1984, 1987) can be 
considered, from a computational viewpoint, to be the most 
efficient of the existing procedures. But its use does not permit 
the automatic detection of noninvertible models. This task 
is easily handled with the algorithm of Hall and Nicholls 
( 1980) and with an extension to the multivariate context of 
the algorithm of Ljung and Box ( 1979). But the former in- 
volves a high computational cost (in many cases), whereas 
the latter involves both some computational inefficiency and 
a loss of numerical precision, due to the requirement for an 
explicit matrix inversion. Finally, the algorithm of Hillmer 
and Tiao ( 1979) does not permit the computation of either 
the exact likelihood function or an appropriate residual vec- 
tor, except in the case of pure moving average (MA) models; 
this fact may become an important drawback when the 
model considered has an autoregressive ( AR) part and the 
sample contains extreme values among the initial observa- 
tions. 

A thorough analysis of currently available procedures al- 
lows one to discover and fully exploit new possibilities ig- 
nored in the previously cited papers. Thus, in Section 2 a 
new method of evaluating the exact likelihood function of 
vector ARMA models is described in detail. The new algo- 
rithm puts together the advantages that can be found sepa- 
rately in existing procedures and does not suffer from any 
of their drawbacks. In Section 3 computational techniques 
for maximizing the likelihood function are considered. These 
techniques take full advantage of the properties offered by 
the evaluation algorithm. An illustrative example of an actual 
situation in which the new estimation procedure performs 
better than one of the most frequently used procedures is 
given in Section 4. Finally, in Section 5 conclusions are sum- 
marized. 

2. EVALUATION OF THE EXACT 
LIKELIHOOD FUNCTION 

Let wf be an rn-dimensional vector-valued time series. It 
is assumed that wf follows the vector ARMA(p, q )  model 
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Mauricio: Estimation of Stationary Vector ARMA Models 283 

'P( B)i?! = 8( B)a,, (1)  and 

where @ ( B )  = I - 'PIB - - - - - 'PpBp, 8 ( B )  = I - BIB 
- - - - - 8,B4;  B is the back shift operator; i?, = w, - p ,  
'P, ( i  = 1, . . . , p ) ,  8, (i  = 1, . . . , q), and p are m X m, 
m X m, and m X 1 parameter matrices; and the a,'s are 
m X 1 random vectors identically and independently dis- 
tributedasN(0, a2Q),with a2>OandQ(mXm)symmetric 
and positive definite. This decomposition of E [  a,aT], al- 
though not unique, is useful for obtaining maximum like- 
lihood estimates by maximizing a concentrated log-likelihood 
as a function of 'P, ( i  = 1, . . . , p ) ,  Q, ( i  = 1, . . . , q), and 
Q only (Sec. 3 ) .  For stationarity, it is required that the zeros 
of I 'P( B )  I lie outside the unit circle. Furthermore, ( 1 ) is 
assumed to satisfy the conditions derived by Hannan ( 1969) 
for the model to be identified. 

Consider a sample of size n and let i? = (i? T, . . . , w, ) 
(mean-corrected observations), a = (a  T, . . . , a:) (white 

a:) (unknown presample values). Then ( 1 ) may be written 
as 

(2)  

where Do,, and De,, are nm X nm block matrices with identity 
matrices on the main diagonal and - 'Pk and - 8 k  down the 
kth subdiagonal. Further, V is the nrn X ( p  + q)m block 
matrix V = (Go,,, Ge,,), where Go,, and Ge,, are the following 
nm X prn and nm X qm block matrices: 

- T  T 

- T  T noise perturbations), and u, = (i? T-,, . . . , wo, . . . , 

Do,,+ = D,,na + Vu,, 

0 fBp . . .  

Go,, = . . .  

. . .  

On the basis of the previous definitions, Nicholls and Hall 
( 1979) have shown that the exact likelihood function of the 
parameters 'P = ( 'PI,  . . . , 'Pp) ,  8 = (al ,  . . . , @,), p ,  0 2 ,  

and Q is given by 

U @ ,  8, P ,  a2, Qlw)  = ( 2 ~ a  ) 

1 

2 - ( n m / 2 )  I Q I - ( n / 2 )  

1 X IATAI-(1/2)exp ( - - 2g2S(*,@3,r,Qlw) . ( 3 )  

The quadratic form in the exponential is given by S( 'P , 8, 
p ,  Qlw) = (Ti? + AE,)T(Ti? + AC,), where T and A 
are the following ( p  + q + n)m X nm and ( p  + q + n)m 
X ( p  + q)m matrices: 

0 
= [(I C3 R)K] ' A = [(I 03 

C* = TC* = - (ATA)-'ATTi?.  ( 5 )  

In (4 ) ,  the nm X nm matrix K is given by K 
= D&,l,Do,n, the nm X ( p  + q)m matrix Z is given by Z 
= -D&V, and, if E[a,af] = 02Q and E[u,u*T] = a2Q, 
then the m X m and ( p  + q)m X ( p  + q)m matrices R and 
T are such that RQRT = I (i.e., Q-' = RTR) and TQTT = I 
(i.e., Q-'  = TTT). Further, the matrix Q can be partitioned 
as follows: 

The (i, j ) th  block of A is given by A,, = ~ - ~ E [ i ? , - ~ i ? ~ ~ ]  
= r ( j  - i) (i ,  j = 1, . . . , p ) ,  and the ( i ,  j ) th  block of 
matrix B is B,, = u-~E[~?.,-+F,] = r,(j - i - q + p )  
( i  = 1, . . . , p ;  j = 1, . . . , q). Because A is symmetric and 
E[i?,-,aT] = 0 for i > 0, to compute A and B only the 
theoretical autocovariance and cross-covariance matrices 
r ( k ) ,  k = 0, . . . , p - 1, and rwa(k), k = -q + 1, . . . , 0, 
are needed. Finally, C is a block-diagonal qm X qm matrix 
with Q's along the main diagonal. 

Thus, to evaluate ( 3 ), one must compute the determinant 
I A TA I and the quadratic form S( 'P, 8, p , Q I w) . Hall and 
Nicholls ( 1980) have suggested computing the latter as fol- 
lows: 

S( 'P, 8, p ,  Q I W )  = (T i? )  '[ I - A( ATA)-'A (Ti?), (6)  

which may be regarded as the residual sum of squares of the 
regression of ( Ti?) on A. To evaluate (Ti?) and A ,  they 
computed ( I  C3 R)Ki? and ( I  C3 R)Z [see (4 ) ]  recursively. 

It is shown next, by exploring in further detail the elements 
of ( 3 ) ,  how to compute the determinant IATAI and the 
quadratic form ( 6 )  in a computationally more efficient 
manner. It is also shown (1 ) how to compute an approxi- 
mation to the exact likelihood function to any desired degree 
of accuracy, (2)  how to detect noninvertible and/or non- 
stationary models, and ( 3 )  how to calculate the residual vec- 
tor for a given set of data and parameter values. 

2.1 A New Method of Computing the Exact 
Likelihood Function 

First, it may be noted from ( 4 )  that 

A(ATA)-'AT 

1.  = [(I 8 R)zT-l(ATA)-1 (1 8 R)zT-'(nTA)-lT-]Tz T ( I  8 RT) 

( A  'A)-) (A'A)-'T-''ZT(I 8 R T )  

and, because Ti? = (0 T ,  TJ T ,  T ,  where 

TJ = ( I  C3 R)& 

& = E[alw,  u* = 01 = Ki?, 

( 7 )  

and 

( 8 )  
the quadratic form (6 )  can be written as 

S(fBp, 8, P ,  Q l w )  = qTrl - v T ( I  @ R)  

X ZT-'(ATA)-'T-ITZ T ( I  C3 RT)q. ( 9 )  
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Also from (4), it may be noted that ATA = I + T-ITXT-l, 
where the (p + q ) m  X (p + q ) m  matrix X is given by 

x = V T H ~ H V ,  (10) 

and, i fg  = max(p, q) ,  then the g m  X (p + q ) m  matrix VI 
consists of the first g m  rows of V and the n m  X g m  matrix 
H consists of the first g m  columns of ( I  8 R)DB,L. Thus 
equation (9) can be rewritten as 

S(@,  8, P ,  Q l w )  = qTq - ~ ' ( 1 8  R)  

X Z(Q-' + VTHTHVl)-IZT(I Q R T ) q .  (11 )  

Now define the following n m  X 1 vector: 

h = D;,LT(I 8 R T ) q ,  (12) 

and let h contain the first g m  elements of h. Then equation 
( 11 ) can be rewritten as 

S(@,  @, cc, Q l w )  
= qTq - L*vI(~-I + V T H ~ H V , ) - ' V T ~ ~ ,  

where it may be verified that VI(Q-I + VTHTHVI)-IVT 
= [(V,QVT)-' + HTH]-'. Thus the quadratic form (1 1) is 

s(@, 8, cc, Q l w )  

= qTq - LT[(VIQVT)-' + HTH]-'L. (13) 

Then, noting from (4) that A TA = I + T-I *XT-', it is clear 
that TTATAT = Q- '  + X, so [see ( lo)]  the determinant 
I A TA I can be calculated as 

IATAI = I Q l  1 Q - I  + VTHTHVII 

= lvlnvTl I (v ,~vT) -~  + H ~ H I ,  (14) 

which is readily available as a by-product of the evaluation 
of the second term on the right side of ( 13 ). Note that when 
m = 1 (i.e., when dealing with univariate models), expres- 
sions ( 1 1 ) and ( 14) reduce to equations (2.6) and (2.4) in 
the work of Ljung and Box ( 1979). Also, note that evaluation 
of these expressions requires the explicit inversion of the 
matrix VIQVT, which results in a loss of computational ef- 
ficiency and occasionally in a loss of numerical precision as 
well. This matrix inversion can be avoided as follows. 

Let M denote the Cholesky factor of VIQVT, so that 
VIQVT = MMT and MT(VIQVT)-'M = I. Then 
[(V,QVT)-' + HTH]-' = M(I + M%ITHM)-'MT, so that 
the quadratic form ( 13) can be finally expressed as 

s(@, @, P ,  Q l w )  

= qTq - (M%)*(I + M ~ H ~ H M ) - ~ ( M % ) .  (15) 

Computation of the second term on the right side of ( 15) 
gives as a by-product the components of the determinant 
(14), which can be written in the form 

IATAI = II+MTHTHMI. (16) 

The exact likelihood function (3) is then computed using 
( 1 5 ) and ( 16 ) . To evaluate these expressions, one needs ( 1 ) 
the g m  X g m  symmetric matrix VIQVT, (2) the g m  X 1 
vector &, (3) the grn X g m  symmetric matrix HTH, and (4) 
the n m  X 1 vector q. 

Once the components of Q are available (Hall and Nicholls 
1980, pp. 254-256; Kohn and Ansley 1982), the ( i ,  j)th 
block ( i  = 1, . . . , g ; j  = 1, . . . , i )  of VIQVT is given by 

p-i q-i 

(v,QvT)ij = c @p-kEk+i , j  - @q-kEk+p+i , j ,  (17) 
k=O k=O 

where, for j  = 1, . . . , g ,  
p-i  q-i 

E, = 2 r ( k ) @ T - k - i + j  - 2 r w n ( - q  + p + k)@:-k-;+j  
k=j-i k=j-j 

( i  = 1 , .  . . , p )  

and 
2p-i  

E i j  = C rwn(-Q + P - kIT@Tp-k- i+ j  - Q@:+p-i+j 
k=p+j-i 

( i  = p + 1, . . . , p + q) ,  

with r( k) = I?( 4) I- for k < 0, Fwa( k) = 0 for k > 0, and 
ei = 0 for i > q. Now, because k contains the first g m  com- 
ponents of h [see ( 12)] and H consists of the first g m  columns 
of (I 8 R)D&,  to evaluate h and HTH, the matrix D& is 
needed. It can be shown (Hillmer and Tiao 1979, pp. 652- 
653) that D& is a lower triangular block matrix with identity 
matrices along the main diagonal, El down the subdiagonal, 
and so on, where the Zk)s are evaluated recursively as 

4 

E k  = c 8 j E k - j  ( k  = 1, . . . , n - I ) ,  (18) 
j =  I 

with E, = I and Ek = 0 for k < 0. Then thejth block of 
vector h is given by 

n-j 

hj = 2 ETRTqi+j ( j  = 1, . . . , g ) .  (19) 

From the special structure of matrix H, the first block column 
of H TH is given by 

i=O 

n-i 

(HTH)jl = 2 E k T R T R E k + j - I  ( i  = 1, . . , g ) ,  (20) 
k=O 

and the remaining diagonal and subdiagonal blocks of matrix 
HTH are evaluated in the following recursive manner: 

(HTH)ij = (HTH);-I,j-l - E : - i + l R T R E n - j + l ,  (21) 

with i = 2, . . . , g and j = 2, . . . , i. Finally, from (7) and 
(8), the n blocks that make up vector & can be computed 
recursively as follows: 

P 4 

& ; = ~ i - - c j c t i - j + c @ j $ , i - j  (i ' l )  . . . )  n), (22) 
j =  1 j =  I 

with cti = 0 for i < 1 and &; = 0 for i < 1. Then the ith 
blockofvectorqisgivenbyqi = R & ; ( i =  1,.  . . , n ) . ( T h e  
calculation of q through ( 7),  ( 8), and (22) can also be found 
in Hall and Nicholls 1980, p. 256 and Ljung and Box 1979, 
p. 267.) 

In summary, the following procedure is suggested to eval- 
uate the exact likelihood function of a vector ARMA model 
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(note that, except for step 1, no explicit matrix inversion is 
required): 

1. Compute the Cholesky factor of matrix Q (say QI ), 
its determinant ( I Q I = I QI I 2 ) ,  and a matrix R such that 
RQRT = I (R = Q;'). 

2. Evaluate the theoretical autocovariance and cross- 
covariance matrices r( k )  ( k  = 0, . . . , p - 1 ) and r,( k )  

3. Compute matrix V I W T  from ( 17) and compute its 

4. Evaluate the sequence Z k  ( k  = 1, . . . , n - 1) from 

5. Calculate vector q using (22). 
6. Compute vector h from (19) and evaluate vector 

7. Evaluate matrix H TH from (20) and (2 1 ). 
8. Compute matrix I + M TH THM, its Cholesky factor 

(say L), and its determinant (11 + MTHTHMI = ILl2), 
which in turn is the determinant ( 16). 

9. Use forward substitution to solve for X in the triangular 
system LA = (M%). 

10. Compute the quadratic form ( 15) as S( a, 8, p ,  Q I w) 
= q T q  - XTX. 

( k  = -4 + 1 , .  . . , O ) .  

Cholesky factor M . 

(18). 

MTh. 

Following the guidelines of Hillmer and Tiao ( 1979, pp. 
653-654) and Ljung and Box ( 1979, p. 269), this procedure 
can also take advantage of the special structure of some spe- 
cific models, such as multiplicative pure MA models and 
pure AR models. The details are straightforward and have 
been omitted. 

2.2 Properties of the New Algorithm 

The previously outlined procedure is basically the result 
of extending and taking one step beyond the method of Ljung 
and Box ( 1979) for the scalar ARMA model. Because the 
explicit inversion of matrix VIQVT is avoided through the 
use of its Cholesky factorization, a more computationally 
efficient and numerically stable method is obtained. Further, 
because the new algorithm operates with gm X gm matrices 
[see( 15)and( 16)]insteadof(p+q)mX(p+q)rnmatrices 
[see (6)], it is also preferable from a computational stand- 
point to that of Hall and Nicholls ( 1980). To illustrate this, 
computer programs were written for the algorithm of Hall 
and Nicholls ( 1980) and the new algorithm developed in 
this article. The exact likelihood function was evaluated for 
a variety of vector ARMA models suitable for annual, quar- 
terly, and monthly data, under the assumption that 25 years 
of data were available. In Table 1 the ratio between the num- 
ber of time-consuming operations (multiplications, divisions, 
and square roots) required by the algorithm of Hall and 
Nicholls ( 1987) and those required by the new algorithm is 
presented for each of the models considered. This ratio is 
always greater than or equal to 1 and reaches its highest 
value for models with both p and q large. 

The comparison from a computational standpoint be- 
tween the new algorithm and that of Shea (1987) is sum- 
marized in Table 2, which contains the same kind of infor- 
mation as Table 1. Apart from minor change through 

Table 1. Ratio between the Number of Time-consuming Operations 
Required by the Algorithm of Hall and Nicholls (1980) and Those 
Required by the New Algorithm. to Evaluate the Exact Likelihood 

Function for Various Models 

Models m = 2  m = 4  

Models for annual data (n = 25) 
AR(1) 1 .oo 
4 2 )  1 .oo 

1 .oo 
1 .oo 

MA(1) 

1.05 
MAP) 

ARMA(2.1) 1.09 
ARMA(1,2) 1.09 
ARMA(2,2) 1.19 

AR(1 )4 1.03 
MA(114 1.02 
ARMA( 1,1)4 1.20 

ARMA(1,l) 

Models for quarterly data (n = 100) 

AR(1) X AR(1)4 1.04 
AR(1) X MA(1)d 1.07 
AR(1) X ARMA(1,l)d 1.24 
MA(1) X AR(1)d 1.06 
MA(1) X MA(1)d 1.03 
MA(1) X ARMA(1,l)d 1.24 
ARMA(1,l) X AR(1)4 1.07 

ARMA(1,l) X ARMA(1,1)4 1.30 
ARMA(1,l) X MA(1)4 1.09 

Models for monthly data (n = 300) 
A W h Z  1.09 

AR(1) X AR(1)iz 1.10 

MA(1) X AR(1)iz 1.08 
MA(1) X MA(1)iz 1.09 
MA(1) X ARMA(1,l)jz 1.53 
ARMA(1,l) X AR(1)jZ 1.09 

ARMA(1 .l) X ARMA(1,l)jZ 1.57 

W 1 h z  1.07 
ARMA(1,l)iz 1.50 

AR(1) X MWhz 1.13 
AR(1) X ARMA(1,l)jz 1.52 

ARMA(1,l) X MA(1)12 1.15 

1 .oo 
1 .oo 
1 .oo 
1 .oo 
1.04 
1.10 
1.10 
1.21 

1.05 
1.02 
1.23 
1.07 
1.08 
1.28 
1.07 
1.04 
1.28 
1.09 
1.11 
1.34 

1.11 
1.09 
1.59 
1.12 
1.15 
1.61 
1.10 
1.10 
1.61 
1.11 
1.75 
1.65 

NOTE The operations required to compute the first p - 1 autocovariame and the first q - 1 
crosscovariance matrices have been excluded. because they are required by both algorithms. 

refinements in coding, it can be seen that the relative effi- 
ciency of the new algorithm increases with m (except if p is 
high and much larger than q ) ,  and that the new algorithm 
is clearly preferable for low- to medium-order models, 
whereas the method of Shea ( 1987) is more efficient for some 
higher-order models. 

Finally, note that the method of Hillmer and Tiao ( 1979) 
does not allow for an exact evaluation of the likelihood func- 
tion when the model contains an AR part; furthermore, in 
the case of pure MA models, the expression of the exact 
likelihood function obtained in that paper is equivalent to 
that of Nicholls and Hall ( 1979 ). 

With regard to other interesting properties, note first that 
when the model considered is invertible, the matrix sequence 
( 18) converges to 0; this convergence is more rapid, the larger 
the moduli of the zeros of I 8( B )  I are (obviously, when q 
= 0, z k  = 0 for k 2 1 ). This may be exploited in the sub- 
sequent computation of ( 19), (20), and (21 ), because if z k  
= 0 for, say, k 2 r*, then not all of the operations involved 
in those expressions need to be camed out. The sequence 
( 18) may be considered to have converged when 
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Table 2. Ratio between the Number of Time-consuming Operations 
Required by the Algorithm of Shea (1989) and Those Required 

by the New Algorithm, to Evaluate the €xact Likelihood 
Function for Various Models 

Models m = 2  m = 4  

Models for annual data (n = 25) 
1.06' 
1 .ow 
2.37' 

AR(2) 

1.75' 
MA(1) 

2.37' 
MAP) 
ARMA(1.1) 
ARMA(2.1) 1.83* 
ARMA(1,2) 1.76' 
ARMA(2,2) 1.74' 

Models for quarterly data (n = 100) 
AR(1)4 0.84 
MA(1)4 1.48' 
ARMA(1,1)4 1.56* 
AR(1) X AR(1)4 0.74 
AR(1) X MA(l), 1.51 
AR(1) X ARMA(1,1)4 1.49' 
MA(1) X AR(1)4 1.53' 
MA(1) X MA(l)4 1.36' 

ARMA(1,l) X AR(1)4 1.34' 
ARMA(1,l) X MA(l)4 1.3w 

MA(1) X ARMA(1,l)d 1.41 

ARMA(1,l) X ARMA(1 ,1)4 1.41' 

Models for monthly data (n = 300) 
AR(1)iz 0.48 
MA(1 )iz 1.09' 
ARMA(1,1)iz 1.129 

AR(1) X MA(1)iz 1.10' 
4 1 )  X AR(1)iz 0.44 

AR(1) X ARMA(1,1)12 1.15* 
MAU) X AR(1)12 0.93 
MA(1) X MA(1)iz 1.05' 

ARMA(1,l) X AR(1)iz 0.87 

ARMA(1,l) X ARMA(1,l)iZ 1.07' 

MA(1) X ARMA(1,l)iz 1 .ow 
ARMA(1.1) X MA(1)iz 1.06' 

1.209 
1.07' 
2.69* 
1.92' 
2.75' 
2.00' 
1.95' 
1.94' 

0.77 
1.60' 
1.72' 
0.65 
1.65' 
1.57' 
1.60' 
1.46' 
1.54' 
1.37' 
1.49' 
1.53' 

0.36 
1.16* 
1.19' 
0.33 
1.17 
1.17' 
0.89 
1.11' 
1.13' 
0.82 
1.12" 
1.12' 

NOTES An astensk indicates that the new algorithm is prefened The operatons required to 
compute the first p - 1 autocovariance and the first q - 1 cross-wvariance matrices have been 
exduded. because they are required by both algorithms 

m m  

(c  i-1 j -1  c Iz,*(iJ)l) < 6, 

where the parameter 6 > 0 can be used to control the desired 
degree of approximation to the exact computation of the 
whole sequence ( 18). It is possible to make the convergence 
criterion sufficiently rigid (i.e., 6 sufficiently small) such that 
the error implied by considering z k  = 0 for k 2 r* becomes 
negligible and hence so too does the difference between the 
exact (calculated with zk from k = 1 to k = n - 1 ) and the 
"approximate" (calculated with & = 0 for k 2 r* ) likelihood. 
Note that this property, which may save much computing 
time, is analogous to the "quick recursions" property offered 
by the Chandrasekhar equations that form the basis of the 
method of Shea ( 1989, pp. 169- 170). Furthermore, using 
the convergence property of ( 18)  for invertible models, it is 
straightforward to detect the presence of any root of the MA 
operator lying inside the unit circle, because in such a case 
the sequence ( 18 ) will be explosive. In practice, it has been 
observed that the following inequality holds for strictly non- 
invertible models: 

for at least one h < n - 1 .  In general, when the MA operator 
has at least one root inside the unit circle, this condition will 
be true for h slightly larger than q ,  allowing detection of 
strict noninvertibility at the beginning of the computation 
of the sequence ( 18). In such a case, the evaluation algorithm 
flags a warning and stops, to avoid overflow problems in the 
subsequent computation of (20) and ( 2  1 ). But there is no 
problem in evaluating these expressions when any root of 
the MA operator lies on the unit circle, provided that the 
other roots have moduli larger than unity. 

Also as a by-product, the new algorithm provides a nec- 
essary (though not sufficient, except for pure AR models) 
check on the stationarity of the model. This is due to the 
fact that the Cholesky decomposition of VIQV exists if and 
only if Q is positive definite, which in turn is a necessary 
condition for stationarity. (It is also sufficient when q = 0; 
see, for example, Ansley 1979, pp. 6 1-62.) Because the com- 
putation of the Cholesky factor of VIQVT is a key step in 
the new algorithm, the impossibility of carrying out this op- 
eration indicates that the model considered is not stationary. 
Note, however, that existence of the Cholesky decomposition 
does not guarantee stationarity for a mixed model. 

Finally, it is shown how to calculate the residuals for a 
given set of observations and parameter values, using some 
of the computations carried so far to evaluate the exact like- 
lihood function. From (2 )  and the definition of K ,  Z, it is 
clear that 1 = KG + Zii*, with Ki+ = &, [see (S)] , and, from 
( 5  ), it follows that 6 ,  = -T-' ( A  TA)-lA T'Y'G. Then, noting 
(4) ,  (7 ) ,  ( 8 ) ,  and (12), it is possible to show that 

Thus, using previous computations, the exact residual vector 
C can be evaluated by ( 1 )  using backward substitution to 
solve for c in the triangular system LTc = A ,  (2)  computing 
the gm X 1 vector d = Mc, and (3) evaluating 1 = &, - r ,  
where the ith block of the nm X 1 vector r = D&(dT, 0 T ) T  

is given by 
i 

ri = 2 Ei-,d, ( i  = 1 , .  . . , n ) ,  
j =  1 

with dJ = 0 for; > g. Conditional on maximum likelihood 
estimates being equal to the true parameter values, the re- 
siduals thus calculated can be shown to be normally distrib- 
uted with E [  1,] = 0. Further, it can be shown that as f tends 
to n, C, converges in quadratic mean to a, and the C,'s tend 
to be uncorrelated, with E [  C,1T] converging to a2Q. (When 
q = 0, this convergence occurs exactly for t > p.) These 
properties are shared with the residuals obtained by using 
the Kalman filter to evaluate the exact likelihood function 
(Shea 1984, p. 93; 1989, p. 162). 

To conclude, Table 3 shows a comparative summary of 
the evaluation algorithms considered in this section, in terms 
of the following features: ( 1 ) exact evaluation of the likeli- 
hood function; ( 2 )  "approximate" evaluation of the likeli- 
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Table 3. Comparison of the Various Algorithms for Evaluating the Likelihood Function 

Hall and Nicholls Liung and Box Hillmer and Tiao Shea 
(1  980) (1979) (1979) (1  987, 1989) New Algorithm 

Exact evaluation Yes Yes Noa Yes Yes 
Approximate evaluation Yesb Yesb YesC Yes Yes 
Computational efficiency No No Yesd Yese Yes’ 
Numerical precision and stability Yes No No’ Yes Yes 
Detection of nonstationarity Yes Yes No Yes Yes 
Detection of noninvertibility Yes Yes Yes No Yes 
Calculation of appropriate residuals Yesb Yes Noa Yes Yes 

. Except in the case of pure moving average models fp = 0). 

’ In fact this is the only possibility offered by this method. which is based on questionable assumptions and does not permit control of the accuracy of the approximation. 

* See the comparison in Table 2. 

Though this feature is not mentioned nor exploited in the papers cited. 

Only when the model contains an autoregressive part @ # 0). 

hood function, as accurate as desired and in most cases sig- 
nificantly faster than the exact evaluation; ( 3) computational 
efficiency, in terms of the number of time-consuming op- 
erations required; (4 )  numerical accuracy and stability; (5  ) 
detection, as a by-product, of nonstationary and/or nonin- 
vertible models; and (6) evaluation of an appropriate residual 
vector using some of the computations carried to evaluate 
the likelihood function. 

In summary, the new evaluation algorithm provides a set 
of useful features, not found together in any of the other 
existing methods, that can be put to work effectively in the 
context of maximum likelihood estimation of vector ARMA 
models. 

3. MAXIMIZATION OF THE EXACT 
LIKELIHOOD FUNCTION 

Having devised a method of computing the exact likeli- 
hood function, we now seek how to maximize it with respect 
to the parameters = (a,, . . . , aP), 8 = (8, ,  . . . , B q ) ,  p ,  
u2, and Q.  The parameter u2 may be differentiated out 
of Equation (3)  to yield the following concentrated log- 
likelihood: 

,*(a, 8, ~3 Q l w )  

- - - mn [log( 2) + 1 1  - 5 10g(II,I12), (24) 
2 

where 

HI = ( q T q  - n ) m ,  

n2 = I Q I  I Dll’n, 

(25) 

(26) 

and the gm X gm matrix D is given by D = 1 + M TH ‘HM 
[see ( I5 ) and ( 16)]. Thus maximizing (24) is equivalent to 
minimizing 

n = n,n2. (27) 

Let no be the value of (27) at the initial estimates of the 
parameters (no = IIl~I120).  Thus if we minimize, instead of 
(27 ), the function 

using. a routine that generates descent search directions in 
every iteration, then the objective function F always lies in 
the interval (0, 1 ). This fact has two advantages. On the one 
hand, it improves the overall accuracy and numerical stability 
of the minimization routine, especially in the computation 
of the gradient vector through finite differences. On the other 
hand, it provides a simple means of handling situations in 
which the algorithm generates new estimates that imply 
nonstationarity, noninvertibility, and/or non-positive def- 
initeness of the matrix Q. In such instances, which can be 
detected as described in the previous section, the scaled ob- 
jective function (28) is set to I .  Thus the minimization rou- 
tine will reject these points and continue the search for an 
acceptable local optimum. Note that this strategy is basically 
the one proposed by Shea ( 1984, pp. 99-loo), although we 
do not solve the determinantal polynomials 1 a( B )  1 = 0 and 
I @( B )  I = 0 to check for nonstationarity and noninvertibility, 
because the new evaluation algorithm provides simpler 
means for carrying out those checks. 

To generate improving search directions, we use a quasi- 
Newton method based on the factorized version of the BFGS 
formula (see, for example, Dennis and Schnabel 1983, chap. 
9). Besides computational efficiency, this method provides, 
as a by-product, a means of estimating the covariance matrix 
of the parameter estimates, because the relevant information 
on the curvature of the objective function (28) is updated 
at every iteration along with the computation of the search 
direction. From (24), the information matrix is given by 

) ( 2; 2 n  
n 

I = E  - 7 V n V n T + - V 2 n  , 

where VII is the gradient vector of (27) and V211 is the 
Hessian matrix. Because VII = 0 at any local optimum, a 
sample estimate of the covariance matrix is given by 
2F(nV2F)-’, where F and (V2F)-l  are evaluated at the 
final estimates. If we use a quasi-Newton method based on 
the factorized version of the BFGS formula to minimize (28), 
then we will have at the end of the iterative process an ap- 
proximation to the Cholesky factor of V2 F (see Dennis and 
Schnabel 1983, pp. 206-207), which makes the computation 
of the covariance matrix estimate straightforward. 

In summary, we suggest the use of the following procedure 
to maximize the exact likelihood function of a vector ARMA 
model: 
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1. Choose a suitable set of initial estimates of the param- 
eters and compute IIlo and 112,, from (25) and (26). 

2. Minimize the scaled objective function (28) using a 
quasi-Newton method based on the factorized version of the 
BFGS formula. 

3. On convergence, use the accumulated information on 
the Cholesky factor of V 2 F  to evaluate a sample estimate of 
the covariance matrix as 2F(nV2F)-’. 

Each time that we compute II, and 112 from (25) and 
(26), we make use of the evaluation algorithm of the previous 
section and set the scaled objective function (28) to 1 when- 
ever the algorithm detects nonstationarity, noninvertibility, 
and/or non-positive definiteness ofQ. It must be noted that 
for a mixed model, the algorithm may converge to a non- 
stationary point. Although this has never happened in prac- 
tice, the computation (on convergence) of the roots of 
I @( B) I = 0 should be performed to ensure that the final 
estimates are admissible. The residual vector is evaluated 
only after the minimization routine has converged, because 
it is not used during the iterative process. Note also that all 
of these computations can be speeded up using the approx- 
imation to the exact likelihood function discussed in the 
previous section. Finally, initial estimates may be conditional 
maximum likelihood estimates or those obtained with other 
fast linear estimation methods (see, for example, Koreisha 
and Pukkila 1989 or Shea 1987), although care must be 
taken to ensure that they are admissible. 

4. A N  EXAMPLE 

It is well known (see, for example, Ansley and Newbold 
1980 or Hillmer and Tiao 1979) that exact maximum like- 
lihood estimation is usually preferable to other approxi- 
mate estimation criteria, especially in the case of small- to 
moderate-sized samples and/ or parameters close to the 
boundaries of the admissible regions. This issue is not pur- 
sued further here. Instead, it is illustrated with an example 
that a set of conditions may hold under which the estimation 
method proposed in this article performs better than one of 
the most frequently used in practice, the “exact” version of 
the procedure of Hillmer and Tiao ( 1979) as implemented 
in The PC SCA Statistical System, release 4.1 (see Liu and 
Hudak 1992, pp. 5.15-5.16). 

A series of 120 monthly observations on the Energy com- 
ponent of the Spanish Industrial Production Index, covering 
the period January 1982-December 199 1 ,  has been consid- 
ered. The data have been obtained from the Boletin Esta- 
distico del Banco de Espaiia (Banco de Espaiia, Madrid) and 
are available on request from the author. 

After trying some alternative patterns of differentiation 
on the original series, it seems clear that w, = VVI2z,, where 
z, denotes the natural logarithm of the original series, can 
be considered to be stationary (see Fig. 1 ). The autocorre- 
lation and partial autocorrelation functions for w, (see Fig. 
1) suggest that this time series might be described by an 
MA( 1 ) X MA( 1 )12 model. 

However, nonsample information suggests the inclusion 
of two deterministic variables, F t I  and l t2,  representing a 

4 1  

0 -  

I I  1 1 ‘111 

0 0.761 38 0 o 38 

-0 761 12 24 36 -0.761 1 2  24 36 

Figure 1. Series w, = W,g; Standardized Series (Top), Autocorrelation 
(Bottom Left), and Partial Autocorrelation (Bottom Right) Functions. w 
= -.0011 (.0051); U, = ,0524. Ljung-Box (1978) statistic: Q(39) 
= 118.0. This high value of the Q statistic merely reflects the so-far un- 
modeled structure observed in the autocorrelation and partial autocor- 
relation functions. 

unit impulse effect in February 1990 and the Easter holiday. 
Thus the following intervention model is specified: 

z, = W l & l  + W2&2 + N,, (29) 

VVI2N, = ( 1  - BIB)( 1 - O I B ’ 2 ) a , .  (30) 

The estimates of (29) and (30) obtained with both the 
exact and approximate versions of the new algorithm, and 
those obtained with’ the algorithm of Hillmer and Tiao 
( 1979), are summarized in Table 4. Clearly, there is no ap- 
preciable difference between the exact and approximate ( ob- 
tained with 6 = .O 1 ) estimates calculated with the new al- 
gorithm. Further, these estimates are almost identical to those 
obtained with the procedure of Hillmer and Tiao ( 1979). 

Table 4. Estimation of Model (29)-(30pb 

Hillmer and Tiao 
Exactc ApproximateC (1979)‘ 

-.04 (.01) -.04 (.01) -.04 (.01) 
W 2  -.09 (.03) -.09 (.02) -.09 (.03) 
w1 

4 .60 (.14) .60 (.14) .61 (.08) 
8, .84 (.13) .84 (.13) .86 (.06) 
0. .0298 ,0298 .0296 

Initial estimates: 0, = -.03, y = -.09.9, = .5. and 0, = .5. 
Estimated standard errors in parentheses. 
Convergence obtained in 25 iterations. 
Convergence obtained in 49 iterations. 
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4 

2 

0 

- 2  

-4  
8 3  84 85  8 6  87 88 89 90 91 

0.26 0 26 

....................... .............................. 

4 

2 

0 

-2 

- 4  

0 26 0 26 

1 ......................................... 1 ..................................... 
0 13 0 13 

0 13 0 13 

0 0 0 0 

-0 13 -0 13 
-0 13 -0 13 

......................................... ......................................... 

-0.26 t 12 24 36 -0.26 t 12 24 36 

Figure 2. Estimation of (29)-(30) with the New Algorithm: Standardized 
Residuals (Top), Autocorrelation (Bottom Left), and Partjal Autocorrelation 
(Bottom Right) Functions. a = -.0016 f.0028); = ,0298. Ljung-Box 
(1  978) statistic: Q(35) = 49.4. The autocorrelation function might suggest 
the adding of a second-order seasonal autoregressive operator to the 
model. 

Of course, there is no appreciable difference to be found in 
the corresponding residuals and their autocorrelation func- 
tions, presented in Figures 2 and 3. 

Although the estimated model seems adequate, one may 
want to add a second-order seasonal AR term to the model 
as an overfitting exercise, because AR( 2)Iz  operators with 
imaginary roots are found frequently in Spanish Industrial 
Production Indices. This action will cope with the high value 
of the residual autocorrelation functions at lag 24 (see Figs. 
2 and 3),  and, although the resulting model may be over- 
parameterized, it is a model that might be used for forecasting 
purposes. Thus model (29)-(  30) is respecified as follows: 

(31 1 z, = W l & l  + W2E12 + N, ,  

( 1  - @]BIZ - @zB~4)vvlzNt  

= (1 - BIB) (  1 - o ~ B ~ ~ ) u , .  (32) 

The estimates of ( 3  I ) and (32) obtained with both the 
exact and approximate versions of the new algorithm, and 
those obtained with the algorithm of Hillmer and Tiao 
(1979), are summarized in Table 5. 

The estimates obtained with the exact and approximate 
versions of the new algorithm are again almost identical. 
Further, these estimates are close to those obtained with the 
procedure of Hillmer and Tiao ( 1979), except for the sea- 
sonal MA parameter, which is estimated to be noninvertible 

......................................... ........................................ 

-0 26 1 12 24 36 -0 26 1 12 24 36 

Figure 3. Estimation of (29)-(30) with the Algorithm of Hillmer and Tiao 
(1  979): Standardized Residuals (Top), Autocorrelation (Bottom Left), and 
Partial Autocorrelation (Bottom Right) Functions. ti = -.0015 (.0027); & 
= .0296. Ljung-Box (1978) statistic: Q(35) = 49.4. The autocorrelation 
function might suggest the adding of a second-order seasonal autore- 
gressive operator to the model. 

using that method, whereas it is invertible if we use the new 
algorithm. This difference can be explained by examining 
the residuals depicted in Figures 4 and 5. 

Figure 4 presents the (standardized) residuals, evaluated 
from (23), corresponding to the estimates obtained with the 
new algorithm, along with its autocorrelation and partial 
autocorrelation functions. The same information is presented 
in Figure 5 ,  using the output generated by the procedure of 
Hillmer and Tiao ( 1979). 

With regard to Figure 5, it may be noted that the first 24 
residuals are not available, because the first p observations 

Table 5. Estimation of Model (31)-(32Pb 

Hillmer and Tiao 
Exactc ApproximateC (1979)' 

W1 -.04 (.01) -.04 (.01) -.04 (.01) 

a1 -.04 (.14) -.04 (.14) 
a2 -.23 (.12) -.24 (.12) -.23 (.lo) 

WZ -.09 (.02) -.09 (.02) -.09 (.02) 
-.11 (.lo) 

81 5 4  (.16) 5 4  (.16) .63 (.09) 
01 .75 (.15) .76 (.15) 1.09 (.08) 
0, ,0293 .0293 ,0240 

'Initial estimates: o, = -.03. y = -.09, 4, = .l, 4* = -.1. 8 ,  = .5, 8, = .5. 

' Convergence obtained in 36 iteratims. 
*Convergence not obtained within 100 iterations. The prmxdure was restarted using as initial 

Estimated standard errors in parentheses. 

estimates the final ones from the first column. but it did not converge. 
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4 .  

1 /85  

- 

- 4  - 4  
83 84 85 86 87 88 89 90  91 83 84  85 86 87 88 89 90 91 

0 26, 0 26, 0 26, 0 2E 

0 13 0 13 0 13 0 13 

0 0 0 0 

-0 13 -0 13 -0 13 -0 13 

-0 26 36 -026 36 -026 36 -0 26 

.......................................... 

........... 1 ............................. 
12 24 36 

Figure 4. Estimation of (31)-(32) with the New Algorithm: Standardized 
Residuals (Top), Autocorrelation (Bottom Left), and Partial Autocorrelation 
(Bottom Right) Functions. S = -.Oil16 (.0027): 2. = ,0293. Ljung-Box 
(1978) statistic: Q(33) = 45.8. Although Q(33) suggests misspecification, 
no structure is appreciated in the autocorrelation function. (Most likely, 
that value is due to outliers.) 

Figure 5. Estimation of (31)-(32) with the Algorithm of Hillmer and Tiao 
(1 979): Standardized Residuals (Top), Autocorrelation (Bottom Left), and 
Partial Autocorrelation (Bottom Right) Functions. B = -.0001 (.0024); 
= .0240. Ljung-Box (1 978) statistic: Q(33) = 44.3. The autocorrelation 
and partial autocorrelation functions suggest the need for a first-order 
seasonal moving average operator. 

of w, are used by the method of Hillmer and Tiao ( 1979) as 
starting values to compute a sequence supposedly generated 
by the MA part of the model. Further, the autocorrelation 
and partial autocorrelation functions of Figure 5 suggest the 
need for a first-order seasonal MA operator, which in fact is 
already included but is estimated to be noninvertible. 

The problem lies in the presence of the observation cor- 
responding to January 1985, which shows a residual only 
slightly larger than two standard deviations in Figure 4, 
though it pushes the seasonal MA operator out of the in- 
vertibility region when the method of Hillmer and Tiao 
( 1979) is used. To see this, the following intervention model 
has been estimated: 

zf = @ I t 1 1  + @ 2 t f 2  + @3t13  + Nf, (33 )  
( 1  - @,IB'2 - @2B24)VV12NI 

= ( 1  - BIB)( 1 - o,B12)al, (34) 

where tI3 is a unit impulse variable in January 1985. The 
estimates of (33 )  and (34 )  are summarized in Table 6. The 
seasonal MA operator now lies within the invertibility region 
using either the new algorithm or the procedure of Hillmer 
and Tiao ( 1979). This in fact was the case in Table 5 when 
the new algorithm was used. Note also from Table 6 that @2 

is clearly significantly different from zero. 
Thus when estimating a model with an AR term, if an 

extreme value occurs in one of the first p observations, then 

the new algorithm performs robustly, whereas the algorithm 
of Hillmer and Tiao ( 1979) can be misleading. Furthermore, 
in the example the residual corresponding to January 1985 
does not appear in Figure 5 ;  hence a situation of this kind 
is hard to detect if the latter method is used. 

5. CONCLUSIONS 

Both the theoretical development and the illustration of 
the performance of the estimation algorithm proposed in 
this article have shown the following important points: 

1. It is possible to improve, as in Section 2, existing meth- 
ods of evaluating the exact likelihood function of vector 

Table 6. Estimation of Model (33)-(34)ab 

Hillmer and Tiao 
Exact" ApproximateC (1979)d 

-.04 (.01) 
-.lo (.02) 
.08 (.02) 

-.34 (.12) 
.39 (.15) 

-.12 (.14) 

.64 (.15) 

.0280 

-.04 (.01) 
-.lo (.02) 

-.12 (.14) 
-.33 (.12) 
.39 (.15) 
.64 (.15) 
.0280 

.08 (.02) 

-.04 (.01) 
-.lo (.02) 
.07 (.02) 

-.17 (.11) 
-.31 (.lo) 
50 (.lo) 
.70 (.09) 
.0266 

~ 

~Init ialestimates:w,=-.W.~,=-.09.w,=.08.9,=.1.~~=-.1.8,=.5.and8,=.5 
Estimated standard errm in parentheses. 
Convergence obtainad in 41 iterations. 
Convergence obtained in 50 iterations. 
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ARMA models to put together a set of useful features that 
can only be found separately in currently available methods. 

2. The adaptation of a computationally efficient mini- 
mization routine to those features yields an estimation pro- 
cedure that not only provides true maximum likelihood es- 
timates, but also provides useful instruments for diagnostic 
checking of the fitted models. 

3. Actual situations may occur in which the new esti- 
mation algorithm performs better than the algorithms fre- 
quently used. 

The procedures outlined in this article can be taken as a 
starting point in the development of new methods of esti- 
mating some generalizations of the vector ARMA model, 
such as the joint estimation of both the ARMA parameters 
and the coefficients of common nonstationary factors in 
multivariate models with series containing such factors. 
Other applications of those procedures, including the joint 
estimation of both the ARMA structure and the deterministic 
components associated with a vector of time series, are 
straightforward. 

[Received April 1993. Revised January 1994.1 
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