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The theorem that an integrable function can be decomposed into sum-
mands of different dimensions is proved. The Monte Carlo algorithm
is proposed for estimating the sensitivity of a function with respect to
arbitrary groups of variables.

INTRODUCTION

Let us suppose that a mathematical model is described by a function f(z), where
z = (x1,...,Zn), and is defined in a unit n-dimensional cube

K"={z|0<z;<1;i=1,...,n},

and we have a program which allows us to calculate the value of f(z) at any given point
z. We want to estimate the sensitivity of f(z) with respect to different variables or their
groups.

Although [1] and [2] are devoted to estimates of sensitivity, the approach suggested in
(3] is more complete. In (3], the expansion of the function f(z) into summands of different
dimension, which was constructed in {4], is used.

Here the expansion theorem from [4] is generalized, the Monte Carlo and quasi-Monte-
Carlo algorithms for estimating sensitivity are considered, and the problem of freezing
unessential variables is touched on.

EXPANSION INTO SUMMANDS OF DIFFERENT DIMENSIONS

Consider a group of indices i,...,%;, where 1 <4 < ... <i,<nmand s=1,...,n We
introduce a notation for a sum over all the different groups of indices

/Z-:\Til,...,i, = ZTi + E Z Tij+...Ty2,. . n-
=1

1<i<j<n

This sum has 2" — 1 summands.
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Definition. A representation of a function f(z1,...,2,) as the sum

f;fO+,Z\fil,...,_i,(xil,-nyxi,) (1)

1s referred to as an expansion into summands of different dimensions, if f; is constant and

the integrals of the summands fi,...i, with respect to any of their “own” variables are zero,
e,

1
/fi,,...i_. (Tiy,...,2i,)dz;, =0, 1<k<s. (2)
0
It follows from this definition that
fo= [ f(@)de, 3)
Kn
and all the summands on the right-hand side of (1) are orthogonal, i.e., if (T1y-.+,15)
# (J1,---,71), then
/ firrois iy dz = 0, (4)
Kn
since at least one of the indices 1, ... sisy J1,---,Jt is not repeated and the integral with

respect to that variable vanishes because of (2).

In [4], the representation of (1) in [4] was constructed by expanding f(z) into multiple
Fourier-Haar series. But we can prove a more general statement:

Theorem 1. There ezists a unique expansion of (1) for any function f(z) integrable
n K™,

Proof. For brevity, we will represent the product of all except certain of the d:c,-' as
a quotient, e.g. dz/dz; is the product of all the dz;, except dz;. We now prove that all
the summands in (1) are uniquely expressed in terms of different integrals of the function

f.
Obviously, the function f, is defined by (3). Consider the function

1

gi(xi)=/l.../f(m)dz/da:,-.
0

0

By integrating (1) with respect to all the variables, except z;, we obtain

9i(zi) = fo + fi(z:). (5)

All the summands f; with one index are defined from this.
Now let 7 < j. Let us consider the function

1

1
9i5(zi, T;5) =/.../f(m)da:/d:r,-d:cj.
0

0
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Integrating (1) with respect to all the variables, except z; and z;, yields
9ii(2i,x5) = fo + fi(z:) + fi(z;) + fis(zi, ;). (6)

All the summands f;; with two indices are defined from this.
Continuing this process, we introduce the functions with s indices, i.e.,

1
Gy, 00 (11:1'1,.. . ,:L‘,'n) = / .. f(:l:) d:l:/ d.’l:i1 e dx,;_ (7)
-0

o

and express all f;, ;. for ‘s =3,4,...,n— 1in terms of them. The last summand f; 2. 1S
defined immediately from (1).

Given this definition of summands in (1), the property in (2) can be verified immediately.
In fact, after integrating the function in (7) with respect to some of its “own” variables we
again obtain a function of the same type.

First, by integrating (5) with respect to z;, we get

i 1
/fi(.’l,‘i)d.’ti =0.
0

Then, by integrating (6) with respect to z;, we get

1
gi(xi) = fO + fi(l'i) + /fij(xi,:tj)d.’ljj.
0
We find from this and (5) that the last integral is zero, and so on. O

THE SENSITIVITY ESTIMATE

If f(z) € Lo, then using the Schwarz inequality and (7) it is easy to prove that g;, i, € La.
But then all f;, ;, € L,. Hence,

D= [ fiz)ds~ fs
Jrom-i

and

D=) Di, .. (8)
It is natural to call these values variances because if we treat the point z to be random
and uniformly distributed in K™, then f(«) and f;,. . (zi,,...,%;:,) are random, and D and
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D;, .;, are their variances. Obviously, these variances characterize how the corresponding
functions vary. Thus, we can use the following numbers to estimate sensitivity

Siyyin = Dyy i, /D. (9)
It follows from (8) and (9) that

Zsi,,...,i, =1 (10)

Only quantities with one index, the sum of which is less than or equal to unity, were
considered in [1} and [2]. Equation (1) was obtained in [3]. It is easy to see that f;, ; =0
if and only if S;, _;, = 0. The function f () is independent of z; if and only if all the Siy . i,

containing the index i are zero. The function f (z) represents the sum of the one-dimensional
summands

f(@) = fo+ filz1) + ...+ falz,)
if and only if all the Si,...i, at 8 > 2 are zero.
Note the obvious generalization of (1). Suppose that the variables z,...,z, are di-

vided into m groups y1,...,Ym; m < n, which do not intersect in pairs. Then f(z) =

f(¥1,...,Ym). Combining the summands in (1) dependent on the variables of each groups,
we get the following expansion instead of (1)

F@) = fo+ Y FerkaWess - Uk.)s (11)
where the indices in ¥ are 1 Sk<...<ks<m; s=1,...,m. The property defined by

(2) remains, but by integration with respect to yx we mean integration with respect to all
the z; in y.

ANALYTICAL EXAMPLES

1. A linear function f(z). The representation (1) has the form
f=fot+ ) cilzi—1/2).
=1

The terms with one index are S; = c2/(c? +...+¢2) and all the multiple index terms
Si,...i, are zero.

2. The products of the binomials used in [5] (two of these functions are also encountered
in [6]):

(a) The function
f=Q2z; +1)...(2z, +1)/2™.
Using the representation of (1) we have
F=1+) (23, —1)...(2z;, —1)/2°
and the variances are

D;,...i, =127°, D =(13/12)" - 1.
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(b) The function
f=(322 +1)...(322 +1)/2".

Using the representation (1) we have
f=1 +/Z\(3x?1 —1)...(322 —-1)/2°
and the variances are
Di,,...i, =57°, D =(6/5)" - 1.
(c) The function
f=02z +1)(222 +2)... (20 +n)/(n +1)! .

Using the representation (1) we have

f=1 +/Z\(2:c,-l S 1) @3, = 1)/ +1). . (6 + 1)

and the variances are

- 1
Dij, . i.=3"[(h+1)...(s+1)% D= 1+ —=| - L
1peeosia [t +1)... (5 + 1)) E [ + 3(i + 1)2]
It was noted in [5] that from the viewpoint of numerical integration, functions (a) and
(b) become bad as n increases, whereas function (c) remains good. It can easily be
verified that as n — oo the sum S + ...+ S, tends to zero for functions (a) and (b),
while for function (c) the sum tends to the finite limit ’

= 0.917.

X (1/3)[(x2/6) = 1]
JE‘%O Z Si= (3v/3/4x) sinh (7v/3) — 1

1=1

CALCULATION ALGORITHMS

Calculation of the individual summands in (1) can be shown to be unnecessary when calcu-
lating the quantities in (9). If we agree to an increase in the multiplicity of the calculated
integrals, then we can get by with only the values of the function f(z).

Let us consider the more common case in which we want an estimate of how a model
depends on one group of variables. Hence, we consider that the variables z;,...,z, can be
divided into two groups, denoted y and z. Let the dimension of y be s and the dimension
of 2 be n — 5. Instead of (11), we get the expansion

f(z) = fo+ fi(y) + f2(2) + f12(y, 2),

where

1

.fl(y)=/-~-/1f($)dz"f0, fz(z):/l---/lf(w)dy—fo,
0 o 0

0

f12(y,,z) = f(z) - fo — fi(y) — f2(2).
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The corresponding variances are

1 1 1 1
Di=[..[filyydy, Da=[...[ fi(2)dz,
[] []
D=/f2($)d$—f3, D12=D—D1—-D2.

Kn»

We develop an expression for D; that doesn’t include fily)

1 171 1 2
// //f(m)dz dy — f2
0 o Lo 0

1

The multiplicity of the last integral is 2n — s.
Similarly, we obtain

Dy

f(y,2)f(y,v)dzdvdy — f2.

o

1 1
D2=/.../f(y,z)f(u,z)dydudz—fg,
0 0

and the multiplicity of this integral is n + s.

All the necessary integrals can be calculated using the Monte Carlo method: as N — 00,
we have

1L
fozNZf(yj,Zj),

Jj=1

1 N
D+fgz'ﬁ2f2(yj7zj))

j=1

1 N
Dy+f§ > fu5,2)f(y5,05),

j=1

N
D+ 2 = 3 Fls2) ).
J=1

Here j is the ordinal number of a test and N is the number of tests. In each test we have
to calculate three values of the function f : f(y;, 2;), f(y;, vj), and f(uj, 2z;). The
random points y; and u; are uniformly distributed in K*, the points z; and v; in K™%,
Since D; and D, are calculated independently, we can use the same random numbers for
the realization of u; and v;. Therefore, the constructive dimension [7] of the algorithm is
t = max(n + s, 2n — s).

If t < 51, we can accelerate the convergence by using quasirandom points Q;,Q-, ...
which are chosen specifically [6]. Then, in order to realize the jth test we should calculate
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the t-dimensional point Q; and, using its Cartesian coordinates 41,95, we need to
find the arguments of the function f, te.,

Yy; = (qj,la"'7qj,s)a ‘ zj : (qj,s+la"',qj,n)y
Uu; = (Qj,n+1, e Qnts)s V; = (Qj,n+1, ces an,2n—s)'

Remark. If the number f; is great, then it is natural to assume that when finding D,
Dy, and D,, we can loose accuracy. This can be avoided by replacing the function f(z)
with the function f(z) — ¢y, where ¢g is a number close to fo.

FREEZING UNESSENTIAL VARIABLES

If above S +S) ; < 1, then it is natural to assume that the function f(y, 2) is only weakly
dependent on variables from group z; so we can use the function f(y, z0), where 24 is a
fixed point from K™~*, instead of f(y, z). '

Let us consider the difference

f(y,2) = f(y, 20) = fal2) + fr2(y, 2) — fa(20) — f12(y, 2). (12)

We take the value - i

80) = 5 [ Uw.2) - v, 20) dx
Kn

as a measure of the error of using f(y, z0) in place of f(y,z). We introduce an auxiliary

function
1

1
o(z) = f2(z) + / / 25, 2) dy,
0 0

whose integral is
1 1

/.../cp(z)dz=D2+D12.

0 0
Squaring (12) and integrating it with respect to all the variables yields

6(z0) = S2 + S12 + ¢(20)/D. (13)
It follows that §(zg) > Sz + Sy for any choice of z.

Theorem 2. If the random point zy is uniformly distributed in K™ ° then we get the
following with a probability exceeding 1 — ¢:

6(z0) < (L4+€71)(S2 + S12).

Proof. Since the random variable () is nonnegative and My(20) = D3+ Dy2, by virtue
of the first Chebyshev inequality, we have the following for an arbitrary h > 0

P{p(20) > h} < h™Y(Dy + D »).
After choosing h = (Dy + D, ) /e, we can write the probability of the opposite event:

P{p(z) < (D2 + Dya)/e} > 1 —€.
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Because of (13), this is equivalent to the statement of the theorem.O

Ezample. The above quasi-Monte-Carlo algorithm was successfully employed by Yu. L. Ba-
ranov (Institute of Machine-Building of USSR Acad. Sci.) to estimate the effect the param-
eters of a car suspension has on the distance between eigenvalues. In this example n = 35
and s = 23. The calculated value S; = 0.98 confirmed the assumption of designers that the
chosen group of variables were dominant.
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