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Abstract

One of the major settings of global sensitivity analysis is that of fixing non-influential factors, in order to reduce the dimensionality of a

model. However, this is often done without knowing the magnitude of the approximation error being produced. This paper presents a

new theorem for the estimation of the average approximation error generated when fixing a group of non-influential factors. A simple

function where analytical solutions are available is used to illustrate the theorem. The numerical estimation of small sensitivity indices is

discussed.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

This work is related to global sensitivity analysis based
on the use of ANOVA decomposition and global
sensitivity indices (see [1,6–8] for theory, and [3,4] for
applications). Definitions of the sensitivity indices can be
found in Section 2.

Different settings for sensitivity analysis are available,
depending on the modeler’s needs. One of these is the
factors fixing setting. It is used for identifying non-
influential factors in the model (those factors that can be
fixed at any value in their domains without significantly
reducing the output variance). A limit with factor fixing is
that of fixing unessential factors without knowing the
magnitude of the approximation error that is being
produced. In Section 2, we prove one new theorem which
quantifies this approximation error of the model output
when one factor or a group of factors is fixed. So, once we
atter r 2006 Elsevier Ltd. All rights reserved.
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know from total indices that a factor is unessential, we will
also have an estimate of the error that is generated by fixing
it.
In this paper we study a model function f ðx1; . . . ;xnÞ,

where the factors x1; . . . ;xn are non-random independent
scaled variables: 0px1p1; . . . ; 0pxnp1. Thus the point
x ¼ ðx1; . . . ;xnÞ is defined in the n-dimensional unit
hypercube with Lebesgue measure. Clearly the factors
x1; . . . ;xn can be regarded as independent random vari-
ables uniformly distributed in the unit interval [0,1]. In this
case the quantities that are called variances are real
variances of certain random variables.

The sensitivity analysis based on ANOVA decomposi-
tion and global sensitivity indices can be easily (mutatis
mutandis) generalized to independent random factors
x1; . . . ;xn with arbitrary distribution functions
F1ðx1Þ; . . . ;F nðxnÞ (e.g., [8]). However, the requirement of
independence is important.

Section 2 contains a new theorem, Section 3—an
illustration of the theorem, and in Section 4 numerical
estimation of small sensitivity indices is discussed.
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2. The proposed theorem

Let x ¼ ðx1; . . . ;xnÞ be a point in the n-dimensional
unit hypercube with Lebesgue measure. We denote
by y an arbitrary subset consisting of s variables and
let z be the set of n�s complementary variables,
1pspn� 1. Thus x � ðy; zÞ and dx ¼ dy dz. All the
integrals below are from 0 to 1 in each variable. The set
of variables z can be regarded as non-essential if the
sensitivity index Stot

z 51. The common practice in such a
situation is to fix somehow a value z0 and to use f ðy; z0Þ as
an approximation to f(x). The approximation error
depends on the choice of z0:

dðz0Þ ¼
1

D

Z
½f ðxÞ � f ðy; z0Þ�

2 dx, (1)

where D is the variance of f(x): D ¼
R

f 2 dx� f 2
0,

f 0 ¼
R

f dx. The model function is assumed to be square
integrable.

The following theorem shows that d(z0) is of the same
order as Stot

z .

Theorem. For an arbitrary z0 the error dðz0ÞXStot
z . If z0 is

assumed to be random and uniformly distributed, then the

expected value is Edðz0Þ ¼ 2Stot
z .

A corollary of the theorem is the following assertion
from [5]: for an arbitrary e40 with probability exceeding
1�e

dðz0Þo 1þ
1

�

� �
Stot

z .

In particular (at e ¼ 0.5), the inequality dðz0Þo3Stot
z holds

with probability exceeding 0.50.
Proof. The ANOVA decomposition of f(x) can be written
in the form

f ðxÞ ¼ f 0 þ g1ðyÞ þ g2ðzÞ þ g12ðxÞ, (2)

where g1(y) is the sum of all terms that depend on y

variables only and similarly g2(z) is the sum of all terms
that depend on z only; g12 is the remainder.

From the definition of ANOVA, one can see thatR
g1 dy ¼

R
g2 dz ¼

R
g12 dy ¼

R
g12 dz ¼ 0.

Consider the variances Dy ¼
R

g2
1 dy, Dz ¼

R
g2
2 dz,

Dyz ¼
R

g2
12 dx.

Squaring (2) and integrating over dx we obtain the
relation D ¼ Dy þDz þDyz that allows a direct definition
of the sensitivity indices for the sets y and z:

Sz ¼
Dz

D
; Stot

z ¼
Dz þDyz

D
; Sy ¼

Dy

D
; Stot

y ¼
Dy þDyz

D
.

From these definitions one can see that Stot
z ¼ 1� Sy,

Stot
y ¼ 1� Sz.
Now an expression for d(z0) can be derived:

dðz0Þ ¼
1

D

Z
g2ðzÞ þ g12ðxÞ � g2ðz0Þ � g12ðy; z0Þ
� �2

dx

¼
1

D

Z
g2
2ðzÞ þ g2

12ðxÞ þ g2
2ðz0Þ þ g2

12ðy; z0Þ
� �

dx

¼
1

D
Dz þDyz þ g2

2ðz0Þ þ

Z
g2
12ðy; z0Þdy

� �
.

The final result is dðz0Þ ¼ Stot
z þ ð1=DÞ½g2

2ðz0ÞþR
g2
12ðy; z0Þdy�.
Both assertions of the theorem follow immediately:

dðz0ÞXStot
z and

R
dðz0Þdz0 ¼ 2Stot

z .

Proof of the Corollary. Consider a non-negative random
variable Z ¼ dðz0Þ=Stot

z � 1. Clearly, EZ ¼ 1. A well-known
Chebyshev inequality for non-negative random variables
with finite expectation can be applied: for an arbitrary h40
the probability PfZXhgpEZ=h.
We put � ¼ 1=h and turn to the opposite event:

PfZo1=�g41� �.
The last relation is equivalent to the assertion of the

corollary.

3. Analytic example: the g-function

We illustrate the theorem by using the g-function of
Sobol’, which is often used as a benchmark for sensitivity
analysis exercises (see e.g., [2]) as the exact analytical values
can be easily calculated. The function is defined as

f ¼
Yn

i¼1

giðxiÞ, (3)

where n is the number of independent input factors and
gi(xi) is

giðxiÞ ¼
j4xi � 2j þ ai

1þ ai

, (4)

for 0pxip1 and aiX0.
The parameter ai is set to determine the importance of

the input factor xi, given that the range of variation of gi(xi)
depends exclusively on the value of ai. If ai ¼ 0, the
corresponding factor xi is important; if ai ¼ 1, xi is
relatively important, while for ai ¼ 9 it becomes non-
important and for ai ¼ 99 non-significant.
For the function (3) the first-order partial variances are

Di ¼ 1=3ð1þ aiÞ
2, the higher order partial variances are

products Di1...is
¼ Di1 ; � � � ;Dis

, and the total variance
D ¼

Qn
i¼1ðDi þ 1Þ � 1.

The group variances Dy, Dz, Dtot
y ¼ Dy þDyz, Dtot

z ¼

Dz þDyz are sums of partial variances. However, integral
representations for these variances allow direct numerical
computation of their values [6,8].

Test 1. We consider a model with eight input factors, where

ai ¼ f0; 1; 4:5; 9; 99; 99; 99; 99g,
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so that the eight factors are in decreasing order of
importance. Table 1 contains total indices Stot

i ¼ Dtot
i =D

(the set contains one variable xi).
Let us assume that one of the non-influential factors (e.g.

x4) is fixed at z0. By substituting (3) into (1) we obtain the
expression for d(z0):

dðz0Þ ¼
1

D

1

ða4 þ 1Þ2
ð4=3þ 2a4 þ a2

4Þ � 2
j4z0 � 2j þ a4

1þ a4

"

þ
j4z0 � 2j þ a4

1þ a4

� �2
#Y8

i¼1
ia4

1

ð1þ aiÞ
2
ð4=3þ 2ai þ a2

i Þ.

The values of d(x4) are shown in Fig. 1.
If we calculate E[d(z0)] we obtain 0.020, which is twice

the total index of factor 4. It means that when fixing factor
4, we commit an average error corresponding to 2% of the
variance of the original g-function.

We have selected 100 values x4 ¼ 0.01(k�0.5),
1pkp100, and computed the corresponding errors d(x4).
The average of these 100 errors was 0.020—in full
agreement with the analysis above. The graph in Fig. 1 is
rather sophisticated, with two minimum values, and
depends strongly on the behavior of f(x).

Test 2. Consider the factor x8. We have selected 100 values

of x8 and calculated the corresponding errors d(x8). The

behavior of d(x8) is similar to d(x4) in Fig. 1 but the

numerical values are completely different and the average of

these 100 errors was 0.00021 which is twice Stot
8 .
Table 1

Total indices

Factor Total index

1 0.787

2 0.242

3 0.034

4 0.010

5 1.05e-04

6 1.05e-04

7 1.05e-04

8 1.05e-04
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Fig. 1. Approximation error d(x4) versus x4.
Test 3. We now illustrate the theorem in the case where a

group of factors is fixed; this is particularly useful for models

with a high number of factors.

One characteristic of variance-based methods is in fact
the capability of treating grouped factors as if they were
single factors. This property of synthesis is essential for the
agility of the interpretation of results (see [4] for applica-
tions).
We consider the five non-important factors (from 4 to 8)

as a single group z, and the remaining three in another
group y. We fix group z at z0.
Estimating E½dðz0Þ�, we obtain 0.022 which is twice the

total index of group z: Stot
z ¼ 0:011.

It is worth noticing that by fixing all the factors of
group z, the approximation error is 2.2% of the variance of
the g-function, i.e. only 0.2% more than when fixing factor
4 alone.

Remark. The analytical values from Table 1 were repro-
duced numerically by the Monte Carlo method. The
sample size was N ¼ 7� 104.

4. On the numerical estimation of small sensitivity indices

According to [6], the integral representation,

Dy ¼

Z
f ðxÞf ðy; z0Þdxdz0 � f 2

0, (5)

was used for defining a Monte Carlo algorithm for the
estimation of Sy ¼ Dy=D. For the kth Monte Carlo trial
two independent random points x(k) and x0ðkÞ are used,
1pkpN. If the number of trials N is sufficiently large, then

f 0 �
1

N

XN

k¼1

f ðxðkÞÞ, (6)

Dþ f 2
0 �

1

N

XN

k¼1

f 2
ðxðkÞÞ, (7)

Dy þ f 2
0 �

1

N

XN

k¼1

f ðxðkÞÞ f ðyðkÞ; z
0
ðkÞÞ. (8)

However in the case when Dy5f 2
0, the computation of

Dy from (8) is spoilt by a loss of accuracy.
For improving the situation, Saltelli [1] proposed a direct

estimation of f 2
0. From the identity

f 2
0 ¼

Z
f ðxÞf ðx0Þdxdx0, (9)

the approximation

f 2
0 �

1

N

XN

k¼1

f ðxðkÞÞ f ðx
0
ðkÞÞ, (10)

can be derived. Despite the fact that the statistical error
produced by (10) is larger than the statistical error of (6),
the use of (8) and (10) reduces the loss of accuracy in the
computation of Dy.
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Fig. 2. Numerical evaluation of S5 using modified and original formulas.
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We made a further step in this direction: substituting (9)
into (5) we obtained a new integral representation for Dy:

Dy ¼

Z
f ðxÞ½f ðy; z0Þ � f ðx0Þ�dxdx0, (11)

and the corresponding approximation

Dy �
1

N

XN

k¼1

f ðxðkÞÞ f ðyðkÞ; z
0
ðkÞ � f ðx0ðkÞÞ

h i
, (12)

which is a combination of (8) and (10).
Despite the fact that the dimension of the integral in (11)

is higher than the dimension of the integral in (5), the
modified Monte Carlo algorithm (6)+(7)+(12) is less
sensitive to the loss of accuracy and allows to reduce the
number of trials N.

Fig. 2 shows the numerical evaluation of S5 for the g-
function at different N using both Monte Carlo algorithms.
The performance of the modified algorithm (6)+(7)+(12)
is much more stable than that of the original algorithm
(6)+(7)+(8). The exact value is S5 ¼ 7.15� 10�5.

The representation (11) makes possible a standard
statistical error evaluation for the approximation (12).

Remark 1. In [1] instead of (5) the representation Dy ¼R
f ðx0Þf ðy0; zÞdz dx0 was used. In this case our modification

can be applied also.
Remark 2. In [5], another way to deal with loss of accuracy
was proposed: to choose a constant cEf0 and to carry out
the calculations with f(x)�c instead of f(x).
5. Conclusions

This work shows how to estimate the approximation
error committed when fixing non-important factors.
In our example the sensitivity indices were estimated

both analytically and numerically; in general, they can be
computed numerically.
The proposed theorem can be easily applied to global

sensitivity methods that provide estimates of total indices;
we have shown the applicability of the procedure also in
cases where factors are treated by groups.
For numerical computation of small sensitivity indices a

modified Monte Carlo algorithm was studied that reduces
the loss of accuracy.
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