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Abstract: The most efficient algorithms for sampling from classical discrete distributions are based upon the 
acceptance/rejection principle. They are complicated and not easy to understand. By adapting the ratio of uniforms 
method to unimodal discrete distributions, sampling procedures can be established, which are both simple and fast. 
Algorithms for the hypergeometric distribution are developed and compared with competing methods. 

Keywords: Discrete random variate generation, ratio of uniforms, simulation, hypergeometric distribution. 

1. Introduction 

Existing fast algorithms for generating Poisson, binomial and hypergeometric variates are 
rather complicated whereas simple procedures are usually slow when the means p are large. 
Straightforward inversion via sequential search from the bottom and procedures which are based 
upon special distributional properties are of simple structure, but their execution times are not 
uniformly bounded over the whole set of parameter values (see [5]). On the other hand, 
sophisticated table methods like the guide table method of Chen and Asau [3] and the alias 
method of Walker [14] are the fastest methods if many variates for fixed parameters are needed. 
Note that every change of parameters demands the construction of new tables which can be done 
in 0( n)-time, where n is the number of mass points of the discrete distribution in hand. The 
acceptance/rejection approach of Von Neumann [13] leads to uniformly fast algorithms, i.e., 
algorithms with bounded execution time over the defined parameter range. However, efficient 
competitors are involved and overburdened with case distinctions (see [l&7]). 

Therefore we were looking for simple and uniformly fast methods. Recently, Ahrens and 
Dieter [2], and Stadlober [ll] proposed successful procedures for Poisson and binomial distribu- 
tions, respectively by applying the ratio of uniforms method of Kinderman and Monahan [8]. The 
generalization to any unimodal discrete distribution is based on Theorem 1, given in Section 2. It 
requires that the standardized histogram function f(x) of the target distribution is majorized by 
a table mountain hat h(x) = min(1, s2/( x - a)2) with suitable chosen location parameters a 
and scale parameters s. Then sampling from f(x) is very easy: 

Generate a pair (U, V) uniformly distributed over the rectangle R = [0, 11 x [ - 1, 11, set X t 
sV/ U + a and return K + 1 X] as a sample from f(x) whenever U2 <f ( X) is fulfilled. Otherwise 
reject X and tFy again. 
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Details of the sampling method are discussed in Section 2. Section 3 is devoted to the choice 
of the hat parameters a and s in case of Poisson, binomial and hypergeometric distributions. 
Implementations of hypergeometric generators are suggested in Section 4. Computational 
experience is reported in Section 5. 

2. The method 

The ratio of uniforms method was invented by Kinderman and Monahan [8] for continuous 
distributions with resealed densities f(x). They utilized it for Cauchy, normal and exponential 
generators. Algorithms for parametric densities were also constructed by Kinderman and 
Monahan [93 (Student-t (a > l), gamma (a 2 l)), by Cheng and Feast [4] (gamma (a > i)), and 
by Monahan [lo] (chi (a 2 1)). 

A specialization and reformulation of the original procedure allows to extend the method to 
discrete distributions. We start with (U, V) uniformly distributed over the standardized rectangle 
R = {(u, u) 10 < u < 1, - 1 G u G l}, transform (U, V) to (X, Y) = (a + sV/U, U2) and cover 
the domain T(C) = {(x, y) 1 - cc < x < 00, 0 < y <f(x)} of the target distribution by T(R) = 
{(x, y) I- cc <x < 00, 0 Gy < min(1, s2/(x - a)‘)} such that acceptance/rejection is possible. 
This is illustrated in Fig. 1 for a = 0, s = 1 in the case of the Cauchy distribution. The half unit 

circle C = {(u, u) 10 < 24 < {m} = ((2.4, u) (0 < u G 1, u2 + u2 G l} is enclosed in R and the 
resealed density f(x) = l/(1 + x2) is covered by the table mountain hat h(x) = min(1, 1/x2). 
Thus ratio of uniforms with rectangles is nothing but acceptance/rejection with table mountains. 

Theorem 1. Let R be the rectangle 

R={(u, u)]Oiu<l, -l<u<l}. 

If (U, V) is uniformly distributed ouer R, then 
(a) X=sV/U+a, s>O, - 00 <a< 00, has thedensity 

a-s<x<a+s, 

elsewhere. 

” 

1 
R y=d 1 

h(x) 
C 

0 E!iJk 1 f(x) 
” 

-1 0 1 X’V/U 

-1 

Fig. 1. Ratio of uniforms as rejection with table mountain hat. 

(1) 
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(b) The conditional density of Y = U2, given X = x, is cafcufated as 

P foralfx: a-s<x<a+s, O<y<l, 

2 

forattotherx, O<y< 
(xsa)2’ 
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(4 

i.e., g(y 1 x) is the density of the (0, 4s g(x))-uniform distribution. 

Proof. See [ll]. 0 

Before turning Theorem 1 into profit, some features of the ratio of uniforms method should be 
pointed out. 

(a) For the sake of simplicity, Theorem 1 is stated only for symmetric table mountains with 
scale parameter s on both sides. On the other hand, we allow for a shift a, which is not part of 
the original version of the method. 

(b) Restriction to 0 < u < 1 requires a standardization of the histogram function 

f( )=( 
pj, j<x<j+l, j=o,1,2 )...) 

. x 
0, elsewhere, 

where pi are the probabilities at the mass points j. Then the standardization reads 

f(x) = 9, where pm = maxf.(x). 
m x 

(c) In view of Theorem l(b) use 

a-s<x<a+s, 

elsewhere, (5) 

as majorizing hat function of f(x). 
The acceptance/rejection approach demands that h(x) dominates f(x). Gbviously this is no 

problem in the flat center between a -s and a + s. But in the tails one has to check for 
candidates a and s, whether f(x) < h(x) holds for x < a - s and whether lim, I ,-J( x - E) < h(x) 

is true if x > a + s. 
(d) The best possible hat parameters a and s in (5) are the ones that lead to the smallest 

efficiencies 

/ 
h(x) dx 

fX= 

/ 

= 4sp,. (6) 

f(x) dx 

We have arrived at the following special case of acceptance/rejection based on Theorem 1. 

Procedure RUD 
(1) Generate U, V - U(0, 1) and set X + a + s(2V - 1)/U, K + 1 Xl. (Generate X with den.@ 

g(x), set K + 1x1). 
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(2) Set Y + U2. (Take Yfrom U(0, 4s g(X)). 
(3) If Y < f( X) ( = pK), return K as a sample from { p, } . Otherwise go to (1). 

Procedure RUD leads to very simple and efficient generators for special discrete distributions. 
Algorithms for the hypergeometric distribution are developed and analyzed in Section 4. 

3. Choice of the hat parameters 

The hat function h(x) (5) will touch the standardized histogram f(x) (4) at one outer corner 
on the left and at one outer corner on the right, if the choice of the parameters a and s is 
optimal. For the Poisson and binomial distributions we calculated such optima by numerical 
search methods for different means p within the range 1 < p G 1000 (see [ll]). It appeared that 
the tightest hats h(x) touch f(x) at two points L = p - fia and R = p + fia where CJ is the 
standard deviation of the distribution. Nevertheless, for efficient algorithms simple choices of a 
and s are needed. In case of the Poisson distribution (P(p)) with histogram function 

fr(x) =fr,(x; PL) = Ge-? o<x<cc, /J&l, (7) 

and mode at m = [p], Ahrens and Dieter [2] fix a at p + : anticipating extensions to the 
binomial and hypergeometric distributions: a = p + 4 is the best choice for symmetric histo- 
grams. Then they approximate the best possible parameter s * for fixed a = p + + by the simple 
upper bound 

f=/$q+#. (8) 

which is justified by numerical verification. 
Analysis of the binomial distribution (B( n, p)) with histogram function 

fB(X) =Mx; n, P) = p’“‘(1 -pyx’, O<x<n+l, p=np>l, (9) 

and one mode at m = [(n + l)p], can be restricted to p G i, because of fB(x; n, p) =fB(n - 
x; n, 1 - p). For the hypergeometric distribution (H( N, M, n)) with histogram function 

max(O, n-N+M)<x<min(n, M)+l, ~=ng 21, (10) 

and one mode at m = ]( n + l)( m + l)/( N + 2)], it suffices to consider parameters 1 < n < +N, 
and 1 G M G +N on account of the properties 

fu(x; N, M, n)=fn(n-xx, N, N-M, n)=f,(M-x, N, M, N-n) 

=f,(n-N+M+ x; N, N-M, N-n). 01) 
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The approximation s^ (8) of s * proved also to be appropriate for the binomial (9) and 
hypergeometric (10) histograms [12], but it is even possible to construct table mountains with the 
true optima s *. The important result which delivers a simple rule for determining s * is the 
following. 

Theorem 2. (a) The hat function 

i 

1, a-s*<x<a+s*, 

h(x) = s*2 
(x _ ajz, elsewhere, 

with smallest possible scale parameter s *, given that a = 1_1+ : (p > l), contacts the standardized 
histogram f(x) = f .( x)/pm at 

k*= 1.~1 or k*= 1.~1 +l, 02) 

where 

6) z=a-6, iff.(x) =fp(x; 843 

(ii) .z=a-/m, iff.(x) =fB(x; n, p> (p G +>, 

(iii) ,z=a-/2a(l-$)(1-s), iff.(x)=fH(x; N,M,n) (n<iN,M<:N). 

(b) The optimal parameter s * 

s*=(a-k*){m 

Proof. See [12]. 0 

is calculated as 

In Fig. 2 the resealed hypergeometric histogram f(x) = fH( x)/p, for N = 256, M = 64, 
n = 16 (p = 4) is compared with two different table mountain hats. The hat with optimal 
parameter s * (13)-displayed in (a)- touches f(x) at the point k * = 2, whereas the simple 
approximation s^ (8) leads to a slightly looser hat shown in (b). 

6 7 6 9 10 x 

y I (b) 

Fig. 2. Standardized H(256,64,16)-histogram f(x) with two hats h(x). (a) Simple choice a = 4.5, optimum s * = 1.87, 
01~. = 1.74, one touching point k * = Il.981 + 1 = 2. (b) Simple choices a = 4.5 and s^ = 2.01, CQ = 1.87. 
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4. Algorithms 

Two algorithmic versions for the hypergeometric distribution with hat parameters (13) are 
developed. The first procedure HRUE utilizes an external function for evaluating yk = In k!. For 
k=O,... ,9, yk is stored in a table and for k > 10 the Stirling approximation 

y,=lnfi+(k+f)lnk-k+&---L 
360k3 ’ 

truncation error E: 1 E 1 < 7.9 x 10p9, is implemented. In the second version HRUE’ all values of 
yk = In k! are tabulated. 

[Set-up]. External double precision function yk = In k!, 
double precision function 8, = yk + yM_k + yn_k + Y,,,_~_~+~. 

Constants In 2 = 0.693147181, B = 5 (for 9 decimal digits precision.) 
Pre-set p + M/N, q +--l-p, a+np+;, c+ 2aq(l-n/N), 
m+](n+l)(M+l)/(N+2)], g+S,, k+-[a-c], x+-(a-k-l)/(a-k). 
If (n - k)( p - k/N) x*)(k+l)(q-(n-k-1)/N), set k+k+l. 
Set h + (a - k) exp(i( g - 8,) + In 2), 
b + min(min(n, M) + 1, la + Bc]). 

(1) 
(2) 
(3) 

Generate U, U* and set X+ a + h(U* - +)/CT. 

If X < 0 or X>, b go to (1). Otherwise set K + 1X]. 
[Test for appropriate method of evaluating fk = p,/p,]. 
If m < 500, go to (4). 
(3.0) Set T+ g - Sk. 

(4) 

(3.1) If U(4 - U) - 3 G T, return K. (Fast acceptance) 
(3.2) If U(U- T) > 1, go to (1). (Fast rejection) 
(3.3) If 2 In U< T, return K. Otherwise go to (1). 
[Evaluatef, viafk=(M-k+l)(n-k+l)/(k(N-M-n+k))fk_l startingatm]. 
Set f + 1.0. If m < K, set i + m and repeat i + i + 1, 
f+f(M-i+l)(n-i+l)/(i(N-M-n+i))until i=K. 
Otherwise, if m > K, set i + K and repeat i +- i + 1, 
f+fi(N-M-n+i)/((M-I+l)(n-i+l))until i=m. 
If U* <f, return K. Otherwise go to (1). 

In step (0) of HRUE h = 2s* is calculated in the following manner. As a consequence of 
Theorem 2(iii) the quotient qk = f(k)/h(k) attains its maximum 1 either at k = ]z] = 
[a - {2aq(l- n/N) ] or at lz] + 1. Hence the touching point is at k whenever the ratio 

is Zess equal 1, otherwise the touching point is at k + 1. The constant b is a convenient safety 
bound for the deviates X in step (2). yk, 6, and g are calculated in double precision to 
circumvent severe loss of accuracy. 
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For mode m G 500 f(K) is evaluated recursively (step (4)) in order to accelerate the algorithm, 

and the deviate K = ] X] with density g(x) = h (x)/4$ * can be accepted whenever U2 <f(K). If 
m > 500, the quantity T = In f(K) is only rarely compared with 2 In U in step (3.3). More often 
the squeeze tests in steps (3.1) and (3.2) based on the inequalities u - l/u < 2 In u < - 3 + 4u - 
u2, will decide. 

The simpler version HRUE’ uses a table with double-precision values yk, k = 0,. . . , N, and it 
needs only steps (O)-(2), (3.0)-(3.3) of HRUE. (The recursive evaluation of f(K) contained in 
step (4) of HRUE is not necessary.) 

Similar algorithms can be constructed using the simple choice s^ (8) instead of s* (13) (see 
Algorithms HRUA and HRUA’ in [12]). 

5. Computational experience 

FORTRAN functions of HRUE and HRUE’, implemented on a Univac 1100/81 mainframe 
computer with 9 decimal digits accuracy, were extensively compared with the competitor H2PE 

Table 1 
Execution times [ psec/variate] UNIVAC 1100/81 

N 40 100 400 

M 20 50 100 

1000 4000 10000 Algorithm 

100 200 500 

/.l=lO 165 165 179 188 193 194 HRUE 
150 161 173 175 177 178 H2PE 
132 128 126 127 128 128 HRUE’ 
139 136 139 134 134 134 H2PE’ 

M 50 200 200 400 500 

p = 20 180 196 214 221 226 HRUE 
167 178 195 203 205 H2PE 
125 126 126 125 125 HRUE’ 
136 134 134 132 132 H2PE’ 

M 200 500 1000 1000 

p=lOO 273 306 348 370 HRUE 
454 428 409 404 H2PE 
125 124 123 123 HRUE’ 
132 131 130 130 H2PE’ 

M 500 2000 2000 

/.l=200 367 
423 
123 
131 

M 

/.l = 500 

408 475 
408 398 
123 123 
130 130 

2000 5000 

565 564 
397 393 
122 122 
130 129 

HRUE 
H2PE 
HRUE’ 
H2PE’ 

HRUE 
H2PE 
HRUE’ 
H2PE’ 
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Table 2 
Initialization times [l~,sec], words, lines of code 

Algorithm Initialization 
times 

Words of 
code 

Lines of 
code 

Supporting 
functions 

HRUE 680-1250 507 49 
H2PE 1470-1955 867 86 

HRUE’ 180 344 36 
H2PE’ 320 443 45 

DLFAC a 
DLFAC 

table b yk 
table yk 

i DLFAC: double precision function for In k!: 94 words, 15 lines. 
yk = In k!: table of double precision values for k = 0,. . , N. 

(valid for m 2 10) by Kachitvichyanukul and Schmeiser [6] and its adapted table version H2PE’. 
H2PE is the only uniformly fast hypergeometric generator known from the literature; it is a 
composition/rejection method with uniform (center) and exponential (tails) envelopes. Uniform 
deviates were generated by the multiplicative congruential generator URAND (factor = 
5 308 871541, modulus = 235), coded in Assembler (time/deviate = 8 psec). The execution times 
in Table 1 for different combinations of N, M and n demonstrate that H2PE is a little faster 
than HRUE (unless 100 < p < 200). On the other hand, it occupies more space (867 words versus 
507 words, third column of Table 2) than HRUE, indicating a significantly higher complexity of 
H2PE. Initialization times are of interest, if only a few deviates are needed for a fixed set of 
parameters N, M and n. This performance measure favors also HRUE (second column of Table 
2). Hence, HRUE would be a good choice for a uniformly fast and short sampling routine, 
supported by a double precision function for In k!, and complemented by simple inversion for 
small means p (say p < 3). 

The table-supplied ratio of uniforms method HRUE’ is both faster and simpler (344 words 
versus 443 words) than H2PE’, additionally it needs also less set-up time (180 ysec) than H2PE’ 
(320 psec). Consequently, HRUE’ can be recommended, if speed and simplicity are important, 
provided that the user is prepared to store the values of In k! in a long double-precision table. 
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