• Home
  • Doc
  • Examples

otbenchmark

Module otbenchmark

Navigation

  • index
  • next |
  • previous |
  • otbenchmark 0.2 documentation »
  • Examples »
  • General examples »
  • Reliability methods »
  • Print a reliability benchmark problem

Table of Contents

  • API Reference
  • Examples
    • General examples
    • Reliability methods
    • Reliability problems
    • Sensitivity methods
    • Sensitivity problems

Previous topic

Reliability methods

Next topic

Compute reference probabilities with Monte-Carlo

This Page

  • Show Source

Quick search

Note

Go to the end to download the full example code.

Print a reliability benchmark problemΒΆ

import otbenchmark as otb
problem = otb.RminusSReliability()
print(problem)
name = R-S
event = class=ThresholdEventImplementation antecedent=class=CompositeRandomVector function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[R,S,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[R,S] outputVariablesNames=[y0] formulas=[R - S] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[R,S] outputVariablesNames=[y0] formulas=[R - S] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[R,S] outputVariablesNames=[y0] formulas=[R - S] antecedent=class=UsualRandomVector distribution=class=JointDistribution name=JointDistribution dimension=2 copula=class=IndependentCopula name=IndependentCopula dimension=2 marginal[0]=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[4] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1] marginal[1]=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[2] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1] operator=class=Less name=Unnamed threshold=0
probability = 0.07864960352514257
print(problem.toFullString())
name = R-S
function = [R,S]->[R - S]
operator = <
threshold = 0.0
probability = 0.07864960352514257
beta = 1.414213562373095
distribution = JointDistribution(Normal(mu = 4, sigma = 1), Normal(mu = 2, sigma = 1), IndependentCopula(dimension = 2))
problem.getName()
'R-S'
event = problem.getEvent()
g = event.getFunction()
g
[R,S]->[R - S]


event.getOperator()

<



threshold = event.getThreshold()
threshold
0.0
pf = problem.getProbability()
pf
0.07864960352514257
beta = problem.computeBeta()
beta
1.414213562373095
inputVector = event.getAntecedent()
distribution = inputVector.getDistribution()
distribution
JointDistribution
  • name=JointDistribution
  • dimension: 2
  • description=[R,S]
  • copula: IndependentCopula(dimension = 2)
Index Variable Distribution
0 R Normal(mu = 4, sigma = 1)
1 S Normal(mu = 2, sigma = 1)


Total running time of the script: (0 minutes 0.004 seconds)

Download Jupyter notebook: plot_print_reliability_benchmark.ipynb

Download Python source code: plot_print_reliability_benchmark.py

Download zipped: plot_print_reliability_benchmark.zip

Navigation

  • index
  • next |
  • previous |
  • otbenchmark 0.2 documentation »
  • Examples »
  • General examples »
  • Reliability methods »
  • Print a reliability benchmark problem