GSobolSensitivity¶
- class GSobolSensitivity(a=[0.0, 9.0, 99.0])¶
Class to define the g-Sobol’ sensitivity benchmark problem.
Methods
Returns the first order Sobol' sensitivity indices.
Returns the function.
Returns the input distribution.
getName()Returns the name of the problem.
Returns the total order Sobol' sensitivity indices.
- __init__(a=[0.0, 9.0, 99.0])¶
Create the g-Sobol sensitivity problem.
for any
where:
for
. The input random variables have the Uniform distribution:
for
where
is the Uniform distribution.
The input random variables are independent.
The default dimension is equal to
.
- Parameters:
- asequence of floats
The coefficients of the linear sum, with length d + 1.
Notes
The dimension of the problem can be changed. The exact sensitivity indices are computed from the vector
.
The function g has no derivative at
.
The function g is symmetric with respect to
.
When
increases, the variable
has a first-order index closer to zero.
A detailed analysis follows:
If
, then the variable
is important, since
.
If
, then the variable
is non-important, since
.
If
, then the variable
is non-significant, since
.
The model was first introduced in (Saltelli & Sobol’, 1995).
References
Saltelli, A., & Sobol’, I. Y. M. (1994). Sensitivity analysis for nonlinear mathematical models: numerical experience. Matematicheskoe Modelirovanie, 7(11), 16-28.
Saltelli, A., & Sobol’, I. M. (1995). About the use of rank transformation in sensitivity analysis of model output. Reliability Engineering & System Safety, 50(3), 225-239.
Marrel, A., Iooss, B., Van Dorpe, F., & Volkova, E. (2008). An efficient methodology for modeling complex computer codes with Gaussian processes. Computational Statistics & Data Analysis, 52(10), 4731-4744.
Saltelli, A., Chan, K., & Scott, E. M. (Eds.). (2000). Sensitivity analysis (Vol. 134). New York: Wiley.
Examples
>>> import otbenchmark as otb >>> problem = otb.GSobolSensitivity()
- getFirstOrderIndices()¶
Returns the first order Sobol’ sensitivity indices.
- Parameters:
- None.
- Returns:
- firstOrderIndices: ot.Point
The first order sensitivity indices.
- getFunction()¶
Returns the function.
- Parameters:
- None.
- Returns:
- function: ot.Function
The function.
- getInputDistribution()¶
Returns the input distribution.
- Parameters:
- None.
- Returns:
- distribution: ot.Distribution
The distribution.
- getName()¶
Returns the name of the problem.
- Parameters:
- None.
- Returns:
- name: str
The name.
- getTotalOrderIndices()¶
Returns the total order Sobol’ sensitivity indices.
- Parameters:
- None.
- Returns:
- totalOrderIndices: ot.Point
The total order sensitivity indices.
otbenchmark