ReliabilityBenchmarkMetaAlgorithm

class ReliabilityBenchmarkMetaAlgorithm(problem)

Methods

runFORM(nearestPointAlgorithm)

Runs the FORM algorithm and get the results.

runFORMImportanceSampling(nearestPointAlgorithm)

Runs the Importance Sampling method with FORM importance distribution and get the number of function evaluations.

runLHS([maximumOuterSampling, ...])

Runs the LHS algorithm and get the results.

runMonteCarlo([maximumOuterSampling, ...])

Runs the ProbabilitySimulationAlgorithm with Monte-Carlo experiment algorithm and get results.

runSORM(nearestPointAlgorithm)

Runs the SORM algorithm and get the results.

runSubsetSampling([maximumOuterSampling, ...])

Runs the Subset method and get the results.

__init__(problem)

Create a meta-algorithm to solve a reliability problem.

Parameters:
problemot.ReliabilityBenchmarkProblem

The problem.

runFORM(nearestPointAlgorithm)

Runs the FORM algorithm and get the results.

Parameters:
nearestPointAlgorithmot.OptimizationAlgorithm

Optimization algorithm used to search the design point.

Returns:
resultReliabilityBenchmarkResult

The problem result.

runFORMImportanceSampling(nearestPointAlgorithm, maximumOuterSampling=1000, coefficientOfVariation=0.1, blockSize=1)

Runs the Importance Sampling method with FORM importance distribution and get the number of function evaluations.

Parameters:
nearestPointAlgorithmot.OptimizationAlgorithm

Optimization algorithm used to search the design point.

maximumOuterSamplingint

The maximum number of outer iterations.

coefficientOfVariationfloat

The maximum coefficient of variation.

blockSizeint

The number of inner iterations.

Returns:
resultReliabilityBenchmarkResult

The problem result.

runLHS(maximumOuterSampling=1000, coefficientOfVariation=0.1, blockSize=1)

Runs the LHS algorithm and get the results.

Parameters:
maximumOuterSamplingint

The maximum number of outer iterations.

coefficientOfVariationfloat

The maximum coefficient of variation.

blockSizeint

The number of inner iterations.

Returns:
resultReliabilityBenchmarkResult

The problem result.

runMonteCarlo(maximumOuterSampling=1000, coefficientOfVariation=0.1, blockSize=1)

Runs the ProbabilitySimulationAlgorithm with Monte-Carlo experiment algorithm and get results.

Parameters:
maximumOuterSamplingint

The maximum number of outer iterations.

coefficientOfVariationfloat

The maximum coefficient of variation.

blockSizeint

The number of inner iterations.

Returns:
resultReliabilityBenchmarkResult

The problem result.

runSORM(nearestPointAlgorithm)

Runs the SORM algorithm and get the results.

Parameters:
nearestPointAlgorithmot.OptimizationAlgorithm

Optimization algorithm used to search the design point.

Returns:
resultReliabilityBenchmarkResult

The problem result.

runSubsetSampling(maximumOuterSampling=1000, coefficientOfVariation=0.1, blockSize=1)

Runs the Subset method and get the results.

Parameters:
maximumOuterSamplingint

The maximum number of outer iterations.

coefficientOfVariationfloat

The maximum coefficient of variation.

blockSizeint

The number of inner iterations.

Returns:
resultReliabilityBenchmarkResult

The problem result.