ReliabilityProblem33

class ReliabilityProblem33(threshold=0.0, mu=[0.0, 0.0, 0.0], sigma=[1.0, 1.0, 1.0])

Methods

computeBeta()

Return the beta of the reliability problem.

getEvent()

Return the event.

getName()

Return the name of the problem.

getProbability()

Return the probability.

toFullString()

Convert the object into a string, with full details.

__init__(threshold=0.0, mu=[0.0, 0.0, 0.0], sigma=[1.0, 1.0, 1.0])

Creates a reliability problem RP33.

The limit-state g function is defined by:

g(x_1, x_2, x_3) = \min(g_1, g_2)

with:

g_1(x_1, x_2, x_3) = -x_1 - x_2 - x_3 + 3 \sqrt{3}

and:

g_2(x_1, x_2, x_3) = -x_3 + 3

We have:

  • x1 ~ Normal(mu[0], sigma[0]),

  • x2 ~ Normal(mu[1], sigma[1]),

  • x3 ~ Normal(mu[2], sigma[2]).

Parameters:
thresholdfloat

The threshold.

musequence of floats

The list of 3 items representing the means of the gaussian distributions.

sigmafloat

The list of 3 items representing the standard deviations of the gaussian distributions.

computeBeta()

Return the beta of the reliability problem.

This is the quantile of the probability of a standard gaussian distribution.

Parameters:
None.
Returns:
beta: float

The beta of the problem.

getEvent()

Return the event.

Parameters:
None.
Returns:
event: ot.ThresholdEvent

The event.

getName()

Return the name of the problem.

Parameters:
None.
Returns:
name: str

The name of the problem.

getProbability()

Return the probability.

Parameters:
None.
Returns:
probability: float

The probability of the event.

toFullString()

Convert the object into a string, with full details.

Parameters:
None.
Returns:
s: str

The string of the problem.