SparsePolynomialChaosSensitivityAnalysis¶
- class SparsePolynomialChaosSensitivityAnalysis(sensitivityBenchmarkProblem, sample_size_train=100, sample_size_test=100, total_degree=2, hyperbolic_quasinorm=0.5)¶
Methods
run
([verbose])Estimate the sensitivity indices from chaos.
- __init__(sensitivityBenchmarkProblem, sample_size_train=100, sample_size_test=100, total_degree=2, hyperbolic_quasinorm=0.5)¶
Estimate Sobol’ sensitivity indices from sparse polynomial chaos.
Uses regression to estimate the coefficients. Uses LARS to select the model. Uses hyperbolic enumerate rule. Uses Sobol’ low discrepancy sequence to train the polynomial. Uses Monte-Carlo sample to test the polynomial.
- Parameters:
- sensitivityBenchmarkProblemotb.SensitivityBenchmarkProblem
The problem.
- sample_size_trainint, optional
The training sample size. The default is 100.
- sample_size_testint, optional
The test sample size. The default is 100.
- total_degreeint, optional
The total polynomial degree. The default is 2.
- hyperbolic_quasinormfloat, optional
The hyperbolic quasi-norm. The default is 0.5.
- Returns:
- None.
- run(verbose=False)¶
Estimate the sensitivity indices from chaos.
- Parameters:
- verbosebool, optional
If True, print intermediate messages. The default is False.
- Returns:
- resultotb.SparsePolynomialChaosSensitivityResult
The result of the calculation.