The Chaboche mechanical model¶
Deterministic model¶
The Chaboche mechanical law predicts the stress depending on the strain:
where:
is the strain,
is the stress (Pa),
, , are the parameters.
The variables have the following distributions and are supposed to be independent.
Random var.
Distribution
Lognormal ( MPa, MPa)
Normal ( MPa, MPa)
Normal (, )
Uniform(a=0, b=0.07).
Thanks to¶
Antoine Dumas, Phimeca
References¶
Lemaitre and J. L. Chaboche (2002) “Mechanics of solid materials” Cambridge University Press.
API documentation¶
- class ChabocheModel(strainMin=0.0, strainMax=0.07, trueR=750000000.0, trueC=2750000000.0, trueGamma=10.0)
Data class for the Chaboche mechanical model.
- Parameters:
- strainMinfloat, optional
The minimum value of the strain. The default is 0.0.
- strainMaxfloat, optional
The maximum value of the strain. The default is 0.07
- trueRfloat, optional
The true value of the R parameter. The default is 750.0e6.
- trueCfloat, optional
The true value of the C parameter. The default is 2750.0e6.
- trueGammafloat, optional
The true value of the Gamma parameter. The default is 10.0.
Examples
>>> from openturns.usecases import chaboche_model >>> # Load the Chaboche model >>> cm = chaboche_model.ChabocheModel() >>> print(cm.data[:5]) [ Strain Stress (Pa) ] 0 : [ 0 7.56e+08 ] 1 : [ 0.0077 7.57e+08 ] 2 : [ 0.0155 7.85e+08 ] 3 : [ 0.0233 8.19e+08 ] 4 : [ 0.0311 8.01e+08 ] >>> print("Inputs:", cm.model.getInputDescription()) Inputs: [Strain,R,C,Gamma] >>> print("Outputs:", cm.model.getOutputDescription()) Outputs: [Sigma]
- Attributes:
- dimThe dimension of the problem
dim=4.
- Strain
Uniform
distribution ot.Uniform(strainMin, strainMax)
- R
Dirac
distribution ot.Dirac(trueR)
- C
Dirac
distribution ot.Dirac(trueC)
- Gamma
Dirac
distribution ot.Dirac(trueGamma)
- inputDistribution
JointDistribution
The joint distribution of the input parameters.
- model
PythonFunction
The Chaboche mechanical law. The model has input dimension 4 and output dimension 1. More precisely, we have and .
- data
Sample
of size 10 and dimension 2 A data set which contains noisy observations of the strain (column 0) and the stress (column 1).
Examples based on this use case¶
Generate observations of the Chaboche mechanical model
Calibration of the Chaboche mechanical model