DrawCDFplot¶
(Source code
, png
)
- DrawCDFplot(*args)¶
Draw a CDF-plot.
Refer to QQ-plot.
- Available usages:
VisualTest.DrawCDFplot(sample1, sample2)
VisualTest.DrawCDFplot(sample1, distribution);
- Parameters:
- sample1, sample22-d sequences of float
Tested samples.
- ditribution
Distribution
Tested model.
- Returns:
- graph
Graph
The graph object
- graph
Notes
The CDF-plot is a visual fitting test for univariate distributions. It opposes the normalized sample ranks to those of the tested quantity (either a distribution or another sample) by plotting the following points cloud:
where denotes either the CDF function of the tested distribution or the empirical CDF of the second tested sample.
If the given sample fits to the tested distribution or sample, then the points should be almost aligned (up to the uncertainty associated with the estimation of the empirical probabilities) with the first bisector whose equation is:
Examples
>>> import openturns as ot >>> from openturns.viewer import View
Generate a random sample from a Normal distribution:
>>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.WeibullMin(2.0, 0.5) >>> sample = distribution.getSample(30) >>> sample.setDescription(['Sample'])
Draw a CDF-plot against a given (inferred) distribution:
>>> tested_distribution = ot.WeibullMinFactory().build(sample) >>> CDF_plot = ot.VisualTest.DrawCDFplot(sample, tested_distribution) >>> View(CDF_plot).show()
Draw a two-sample CDF-plot:
>>> another_sample = distribution.getSample(50) >>> another_sample.setDescription(['Another sample']) >>> CDF_plot = ot.VisualTest.DrawCDFplot(sample, another_sample) >>> View(CDF_plot).show()