FieldToPointFunction¶
- class FieldToPointFunction(*args)¶
Function mapping a field into a point.
- Parameters:
- inputMesh
Mesh
The input mesh
- inputDimpositive int
Dimension of the input field values d
- outputDimpositive int
Dimension of the output vector d’
- inputMesh
Methods
Get the number of calls of the function.
Accessor to the object's name.
getId
()Accessor to the object's id.
Accessor to the underlying implementation.
Get the description of the input field values.
Get the dimension of the input field values.
Get the mesh associated to the input domain.
getMarginal
(*args)Get the marginal(s) at given indice(s).
getName
()Accessor to the object's name.
Get the description of the output vector.
Get the dimension of the output vector.
setInputDescription
(inputDescription)Set the description of the input field values.
setName
(name)Accessor to the object's name.
setOutputDescription
(outputDescription)Set the description of the output vector.
Notes
Field to point functions act on fields to produce points:
with a mesh of .
A field is represented by a collection of elements of where is a vertex of and the associated value in .
The two first constructors build an object which evaluation operator is not defined (it throws a NotYetImplementedException). The instantiation of such an object is used to extract an actual
FieldToPointFunction
from aStudy
.Examples
>>> import openturns as ot
Use the class
OpenTURNSPythonFieldToPointFunction
to create a function that acts on fields of input dimension and input dimension and returns their spatial mean vector of dimension .Using the class
OpenTURNSPythonFieldToPointFunction
allows one to define a persistent state between the evaluations of the function.>>> class FUNC(ot.OpenTURNSPythonFieldToPointFunction): ... def __init__(self): ... # first argument: ... mesh = ot.RegularGrid(0.0, 0.1, 11) ... super(FUNC, self).__init__(mesh, 2, 2) ... self.setInputDescription(['R', 'S']) ... self.setOutputDescription(['T', 'U']) ... def _exec(self, X): ... Xs = ot.Sample(X) ... Y = Xs.computeMean() ... return Y >>> F = FUNC()
Create the associated FieldToPointFunction:
>>> myFunc = ot.FieldToPointFunction(F)
It is also possible to create a FieldToPointFunction from a python function as follows:
>>> def myPyFunc(X): ... Xs = ot.Sample(X) ... Y = Xs.computeMean() ... return Y >>> inputDim = 2 >>> outputDim = 2 >>> mesh = ot.RegularGrid(0.0, 0.1, 11) >>> myFunc = ot.PythonFieldToPointFunction(mesh, inputDim, outputDim, myPyFunc)
Evaluate the function on a field:
>>> myField = ot.Field(mesh, ot.Normal(2).getSample(11)) >>> Y = myFunc(myField)
- __init__(*args)¶
- getCallsNumber()¶
Get the number of calls of the function.
- Returns:
- callsNumberint
Counts the number of times the function has been called since its creation.
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getId()¶
Accessor to the object’s id.
- Returns:
- idint
Internal unique identifier.
- getImplementation()¶
Accessor to the underlying implementation.
- Returns:
- implImplementation
A copy of the underlying implementation object.
- getInputDescription()¶
Get the description of the input field values.
- Returns:
- inputDescription
Description
Description of the input field values.
- inputDescription
- getInputDimension()¶
Get the dimension of the input field values.
- Returns:
- dint
Dimension of the input field values.
- getMarginal(*args)¶
Get the marginal(s) at given indice(s).
- Parameters:
- iint or list of ints,
Indice(s) of the marginal(s) to be extracted.
- Returns:
- function
FieldToPointFunction
The initial function restricted to the concerned marginal(s) at the indice(s) .
- function
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getOutputDescription()¶
Get the description of the output vector.
- Returns:
- outputDescription
Description
Description of the output vector.
- outputDescription
- getOutputDimension()¶
Get the dimension of the output vector.
- Returns:
- d’int
Dimension of the output vector.
- setInputDescription(inputDescription)¶
Set the description of the input field values.
- Parameters:
- inputDescriptionsequence of str
Description of the input field values.
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
- setOutputDescription(outputDescription)¶
Set the description of the output vector.
- Parameters:
- outputDescriptionsequence of str
Description of the output vector.
Examples using the class¶
Estimate Sobol indices on a field to point function