PointToFieldFunction

class PointToFieldFunction(*args)

Function mapping a point into a field.

Parameters:
inputDimint, \geq 1

Dimension d of the input vector

outputMeshMesh

The output mesh

outputDimint, \geq 1

Dimension d' of the output field

Methods

getCallsNumber()

Get the number of calls of the function.

getClassName()

Accessor to the object's name.

getId()

Accessor to the object's id.

getImplementation()

Accessor to the underlying implementation.

getInputDescription()

Get the description of the input vector.

getInputDimension()

Get the dimension of the input vector.

getMarginal(*args)

Get the marginal(s) at given indice(s).

getName()

Accessor to the object's name.

getOutputDescription()

Get the description of the output field values.

getOutputDimension()

Get the dimension of the output field values.

getOutputMesh()

Get the output mesh.

setInputDescription(inputDescription)

Set the description of the input vector.

setName(name)

Accessor to the object's name.

setOutputDescription(outputDescription)

Set the description of the output field values.

Notes

Point to field functions act on points to produce fields:

f: \left| \begin{array}{rcl}
           \Rset^{d} &  \rightarrow & \cM_{N'} \times (\Rset^{d'})^{N'}  \\
            \vect{v} & \mapsto  & F' 
          \end{array} \right.

with \cM_{N'} a mesh of \cD' \subset \Rset^{n'}.

A field is represented by a collection (\vect{t}'_i, \vect{v}'_i)_{1 \leq i \leq N'} of elements of \cM_{N'} \times (\Rset^{d'})^{N'} where \vect{t}'_i is a vertex of \cM_{N'} and \vect{v}'_i the associated value in \Rset^{d'}.

The two first constructors build an object which evaluation operator is not defined (it throws a NotYetImplementedException). The instantiation of such an object is used to extract an actual PointToFieldFunction from a Study.

Examples

>>> import openturns as ot

Use the class OpenTURNSPythonPointToFieldFunction to create a function that acts a vector \vect{v} of dimension d=2 and returns a field defined by:

  • the mesh that discretizes [0, 1] into 10 regular intervals of length 0.1 (n=1)

  • the value associated to the vertex number i is \vect{v}'_i = i*\vect{v} (d'=2)

Using the class OpenTURNSPythonFieldToPointFunction allows one to define a persistent state between the evaluations of the function.

>>> class FUNC(ot.OpenTURNSPythonPointToFieldFunction):
...     def __init__(self):
...         mesh = ot.RegularGrid(0.0, 0.1, 11)
...         super(FUNC, self).__init__(2, mesh, 2)
...         self.setInputDescription(['R', 'S'])
...         self.setOutputDescription(['T', 'U'])
...     def _exec(self, X):
...         size = self.getOutputMesh().getVerticesNumber()
...         Y = [ot.Point(X)*i for i in range(size)]
...         return Y
>>> F = FUNC()

Create the associated PointToFieldFunction:

>>> myFunc = ot.PointToFieldFunction(F)

It is also possible to create a PointToFieldFunction from a python function as follows:

>>> mesh = ot.RegularGrid(0.0, 0.1, 11)
>>> def myPyFunc(X):
...     size = 11
...     Y = [ot.Point(X)*i for i in range(size)]
...     return Y
>>> inputDim = 2
>>> outputDim = 2
>>> myFunc = ot.PythonPointToFieldFunction(inputDim, mesh, outputDim, myPyFunc)

Evaluation the function on a vector:

>>> Yfield = myFunc([1.1, 2.2])
__init__(*args)
getCallsNumber()

Get the number of calls of the function.

Returns:
callsNumberint

Counts the number of times the function has been called since its creation.

getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getId()

Accessor to the object’s id.

Returns:
idint

Internal unique identifier.

getImplementation()

Accessor to the underlying implementation.

Returns:
implImplementation

A copy of the underlying implementation object.

getInputDescription()

Get the description of the input vector.

Returns:
inputDescriptionDescription

Description of the input vector.

getInputDimension()

Get the dimension of the input vector.

Returns:
dint

Dimension d of the input vector.

getMarginal(*args)

Get the marginal(s) at given indice(s).

Parameters:
iint or list of ints, 0 \leq i < d

Indice(s) of the marginal(s) to be extracted.

Returns:
functionPointToFieldFunction

The initial function restricted to the concerned marginal(s) at the indice(s) i.

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

getOutputDescription()

Get the description of the output field values.

Returns:
outputDescriptionDescription

Description of the output field values.

getOutputDimension()

Get the dimension of the output field values.

Returns:
d’int

Dimension d' of the output field values.

getOutputMesh()

Get the output mesh.

Returns:
outputMeshMesh

The mesh \cM_{N'} of the output field.

setInputDescription(inputDescription)

Set the description of the input vector.

Parameters:
inputDescriptionsequence of str

Description of the input vector.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

setOutputDescription(outputDescription)

Set the description of the output field values.

Parameters:
outputDescriptionsequence of str

Description of the output field values.

Examples using the class

Viscous free fall: metamodel of a field function

Viscous free fall: metamodel of a field function

Define a connection function with a field output

Define a connection function with a field output

Define a function with a field output: the viscous free fall example

Define a function with a field output: the viscous free fall example

Logistic growth model

Logistic growth model