StiffenedPanel¶
- class StiffenedPanel¶
Data class for the stiffened panel model.
- Attributes:
- dimint
The dimension of the problem, dim=10
- model
SymbolicFunction
Model of the critical shearing load. The model has input dimension 10 and output dimension 1. More precisely, we have and .
- E
TruncatedNormal
Young modulus distribution (Pa), ot.TruncatedNormal(110.0e9, 55.0e9, 99.0e9, 121.0e9)
- nu
Uniform
Poisson coefficient (-) distribution ot.Uniform(0.3675, 0.3825)
- h_c
Uniform
Distance between the mean surface of the hat and the foot of the Stiffener (m) distribution ot.Uniform(0.0285, 0.0315)
- ell
Uniform
Length of the stiffener flank (m) distribution ot.Uniform(0.04655, 0.05145)
- f_1
Uniform
Width of the stiffener foot (m) distribution ot.Uniform(0.0266, 0.0294)
- f_2
Uniform
Width of the stiffener hat (m) distribution ot.Uniform(0.00627, 0.00693)
- t
Uniform
Thickness of the panel and the stiffener (m) distribution ot.Uniform(8.02e-5, 8.181e-5)
- a
Uniform
Width of the panel (m) distribution ot.Uniform(0.6039, 0.6161)
- b_0
Uniform
Distance between two stiffeners (m) distribution ot.Uniform(0.04455, 0.04545)
- p
Uniform
Half-width of the stiffener (m) distribution ot.Uniform(0.03762, 0.03838)
- distribution
JointDistribution
The joint distribution of the input parameters.
Examples
>>> from openturns.usecases import stiffened_panel >>> # Load the stiffened panel model >>> panel = stiffened_panel.StiffenedPanel() >>> print("Inputs:", panel.model.getInputDescription()) Inputs: [F,L,a,De,di,E] >>> print("Outputs:", panel.model.getOutputDescription()) [Deflection,Left angle,Right angle]
- __init__()¶
Examples using the class¶
Estimate a buckling probability