InverseNatafIndependentCopulaEvaluation¶
-
class
InverseNatafIndependentCopulaEvaluation
(*args)¶ Proxy of C++ OT::InverseNatafIndependentCopulaEvaluation.
Methods
draw
(*args)Draw the output of function as a Graph
.getCallsNumber
()Accessor to the number of times the function has been called. getClassName
()Accessor to the object’s name. getDescription
()Accessor to the description of the inputs and outputs. getId
()Accessor to the object’s id. getInputDescription
()Accessor to the description of the inputs. getInputDimension
()Accessor to the number of the inputs. getMarginal
(*args)Accessor to marginal. getName
()Accessor to the object’s name. getOutputDescription
()Accessor to the description of the outputs. getOutputDimension
()Accessor to the number of the outputs. getParameter
()Accessor to the parameter values. getParameterDescription
()Accessor to the parameter description. getParameterDimension
()Accessor to the dimension of the parameter. getShadowedId
()Accessor to the object’s shadowed id. getVisibility
()Accessor to the object’s visibility state. hasName
()Test if the object is named. hasVisibleName
()Test if the object has a distinguishable name. isActualImplementation
()Accessor to the validity flag. parameterGradient
(inP)Gradient against the parameters. setDescription
(description)Accessor to the description of the inputs and outputs. setInputDescription
(inputDescription)Accessor to the description of the inputs. setName
(name)Accessor to the object’s name. setOutputDescription
(outputDescription)Accessor to the description of the outputs. setParameter
(parameters)Accessor to the parameter values. setParameterDescription
(description)Accessor to the parameter description. setShadowedId
(id)Accessor to the object’s shadowed id. setVisibility
(visible)Accessor to the object’s visibility state. __call__ -
__init__
(*args)¶ Initialize self. See help(type(self)) for accurate signature.
-
draw
(*args)¶ Draw the output of function as a
Graph
.- Available usages:
draw(inputMarg, outputMarg, CP, xiMin, xiMax, ptNb)
draw(firstInputMarg, secondInputMarg, outputMarg, CP, xiMin_xjMin, xiMax_xjMax, ptNbs)
draw(xiMin, xiMax, ptNb)
draw(xiMin_xjMin, xiMax_xjMax, ptNbs)
Parameters: - outputMarg, inputMarg : int,
outputMarg is the index of the marginal to draw as a function of the marginal with index inputMarg.
- firstInputMarg, secondInputMarg : int,
In the 2D case, the marginal outputMarg is drawn as a function of the two marginals with indexes firstInputMarg and secondInputMarg.
- CP : sequence of float
Central point.
- xiMin, xiMax : float
Define the interval where the curve is plotted.
- xiMin_xjMin, xiMax_xjMax : sequence of float of dimension 2.
In the 2D case, define the intervals where the curves are plotted.
- ptNb : int
or list of ints of dimension 2
The number of points to draw the curves.
Notes
We note
where
and
, with
and
.
- In the first usage:
Draws graph of the given 1D outputMarg marginal
as a function of the given 1D inputMarg marginal with respect to the variation of
in the interval
, when all the other components of
are fixed to the corresponding ones of the central point CP. Then it draws the graph:
.
- In the second usage:
Draws the iso-curves of the given outputMarg marginal
as a function of the given 2D firstInputMarg and secondInputMarg marginals with respect to the variation of
in the interval
, when all the other components of
are fixed to the corresponding ones of the central point CP. Then it draws the graph:
.
- In the third usage:
The same as the first usage but only for function
.
- In the fourth usage:
The same as the second usage but only for function
.
Examples
>>> import openturns as ot >>> from openturns.viewer import View >>> f = ot.SymbolicFunction(['x'], ['sin(2*pi_*x)*exp(-x^2/2)']) >>> graph = f.draw(-1.2, 1.2, 100) >>> View(graph).show()
-
getCallsNumber
()¶ Accessor to the number of times the function has been called.
Returns: - calls_number : int
Integer that counts the number of times the function has been called since its creation.
-
getClassName
()¶ Accessor to the object’s name.
Returns: - class_name : str
The object class name (object.__class__.__name__).
-
getDescription
()¶ Accessor to the description of the inputs and outputs.
Returns: - description :
Description
Description of the inputs and the outputs.
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getDescription()) [x1,x2,y0]
- description :
-
getId
()¶ Accessor to the object’s id.
Returns: - id : int
Internal unique identifier.
-
getInputDescription
()¶ Accessor to the description of the inputs.
Returns: - description :
Description
Description of the inputs.
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getInputDescription()) [x1,x2]
- description :
-
getInputDimension
()¶ Accessor to the number of the inputs.
Returns: - number_inputs : int
Number of inputs.
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getInputDimension()) 2
-
getMarginal
(*args)¶ Accessor to marginal.
Parameters: - indices : int or list of ints
Set of indices for which the marginal is extracted.
Returns: - marginal :
Function
Function corresponding to either
or
, with
and
.
-
getName
()¶ Accessor to the object’s name.
Returns: - name : str
The name of the object.
-
getOutputDescription
()¶ Accessor to the description of the outputs.
Returns: - description :
Description
Description of the outputs.
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getOutputDescription()) [y0]
- description :
-
getOutputDimension
()¶ Accessor to the number of the outputs.
Returns: - number_outputs : int
Number of outputs.
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getOutputDimension()) 1
-
getParameterDescription
()¶ Accessor to the parameter description.
Returns: - parameter :
Description
The parameter description.
- parameter :
-
getParameterDimension
()¶ Accessor to the dimension of the parameter.
Returns: - parameter_dimension : int
Dimension of the parameter.
-
getShadowedId
()¶ Accessor to the object’s shadowed id.
Returns: - id : int
Internal unique identifier.
-
getVisibility
()¶ Accessor to the object’s visibility state.
Returns: - visible : bool
Visibility flag.
-
hasName
()¶ Test if the object is named.
Returns: - hasName : bool
True if the name is not empty.
-
hasVisibleName
()¶ Test if the object has a distinguishable name.
Returns: - hasVisibleName : bool
True if the name is not empty and not the default one.
-
isActualImplementation
()¶ Accessor to the validity flag.
Returns: - is_impl : bool
Whether the implementation is valid.
-
parameterGradient
(inP)¶ Gradient against the parameters.
Parameters: - x : sequence of float
Input point
Returns: - parameter_gradient :
Matrix
The parameters gradient computed at x.
-
setDescription
(description)¶ Accessor to the description of the inputs and outputs.
Parameters: - description : sequence of str
Description of the inputs and the outputs.
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getDescription()) [x1,x2,y0] >>> f.setDescription(['a','b','y']) >>> print(f.getDescription()) [a,b,y]
-
setInputDescription
(inputDescription)¶ Accessor to the description of the inputs.
Returns: - description :
Description
Description of the inputs.
- description :
-
setName
(name)¶ Accessor to the object’s name.
Parameters: - name : str
The name of the object.
-
setOutputDescription
(outputDescription)¶ Accessor to the description of the outputs.
Returns: - description :
Description
Description of the outputs.
- description :
-
setParameter
(parameters)¶ Accessor to the parameter values.
Parameters: - parameter : sequence of float
The parameter values.
-
setParameterDescription
(description)¶ Accessor to the parameter description.
Parameters: - parameter :
Description
The parameter description.
- parameter :
-
setShadowedId
(id)¶ Accessor to the object’s shadowed id.
Parameters: - id : int
Internal unique identifier.
-
setVisibility
(visible)¶ Accessor to the object’s visibility state.
Parameters: - visible : bool
Visibility flag.
-