SimplicialCubature¶
- class SimplicialCubature(*args)¶
Integration over a mesh.
Methods
Accessor to the object's name.
Maximum absolute error accessor.
Maximum calls number accessor.
Maximum relative error accessor.
getName
()Accessor to the object's name.
getRule
()Integration rule accessor.
hasName
()Test if the object is named.
integrate
(*args)Evaluation of the integral of on a mesh.
setMaximumAbsoluteError
(maximumAbsoluteError)Maximum absolute error accessor.
setMaximumCallsNumber
(maximumCallsNumber)Maximum calls number accessor.
setMaximumRelativeError
(maximumRelativeError)Maximum relative error accessor.
setName
(name)Accessor to the object's name.
setRule
(rule)Integration rule accessor.
Notes
This is a reimplementation of the method described in [genz2003]. The original matlab file can be found at https://www.math.wsu.edu/faculty/genz/software/software.html.
Examples
>>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]] >>> simplicies = [[0, 1, 2]] >>> mesh = ot.Mesh(vertices, simplicies) >>> algo = ot.SimplicialCubature() >>> f = ot.SymbolicFunction(['x1', 'x2'], ['exp(x1 + x2)']) >>> value = algo.integrate(f, mesh)
- __init__(*args)¶
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getMaximumAbsoluteError()¶
Maximum absolute error accessor.
- Returns:
- maxAbsErrorfloat
The maximum absolute error.
- getMaximumCallsNumber()¶
Maximum calls number accessor.
- Returns:
- maxEvalint
The maximum function calls number.
- getMaximumRelativeError()¶
Maximum relative error accessor.
- Returns:
- maxRelErrorfloat
The maximum relative error.
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getRule()¶
Integration rule accessor.
- Returns:
- ruleint in [1, 4]
The integration rule.
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- integrate(*args)¶
Evaluation of the integral of on a mesh.
- Parameters:
- Returns:
- value
Point
Approximation of the integral.
- value
Examples
>>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]] >>> simplicies = [[0, 1, 2]] >>> mesh = ot.Mesh(vertices, simplicies) >>> algo = ot.SimplicialCubature() >>> f = ot.SymbolicFunction(['x1', 'x2'], ['exp(x1 + x2)']) >>> value = algo.integrate(f, mesh)
- setMaximumAbsoluteError(maximumAbsoluteError)¶
Maximum absolute error accessor.
- Parameters:
- maxAbsErrorfloat
The maximum absolute error.
- setMaximumCallsNumber(maximumCallsNumber)¶
Maximum calls number accessor.
- Parameters:
- maxEvalint
The maximum function calls number.
- setMaximumRelativeError(maximumRelativeError)¶
Maximum relative error accessor.
- Parameters:
- maxRelErrorfloat
The maximum relative error.
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
- setRule(rule)¶
Integration rule accessor.
- Parameters:
- ruleint in [1, 4]
The integration rule.