IndividualChanceMeasure distribution¶
(Source code
, png
, hires.png
, pdf
)
- class otrobopt.IndividualChanceMeasure(*args)¶
Individual chance measure function.
It is built from a parametric function and a distribution of density function .
When the constraint considered is :
In case of a continuous distribution:
In case of a discrete distribution:
- Parameters:
- function
openturns.Function
Parametric function
- distribution
openturns.Distribution
Distribution of parameters
- operator
openturns.ComparisonOperator
Comparison operator in front of
- alphasequence of float
Probability levels
- function
Examples
>>> import openturns as ot >>> import otrobopt >>> thetaDist = ot.Normal(1.0, 1.0) >>> f_base = ot.SymbolicFunction(['x', 'theta'], ['x*theta']) >>> f = ot.ParametricFunction(f_base, [1], [1.0]) >>> measure = otrobopt.IndividualChanceMeasure(f, thetaDist, ot.GreaterOrEqual(), [0.95]) >>> x = [1.0] >>> print(measure(x)) [-0.108655]
Methods
draw
(*args)Draw the output of function as a
Graph
.getAlpha
()Probability levels accessor.
Accessor to the number of times the function has been called.
Accessor to the output verification flag.
Accessor to the object's name.
Accessor to the description of the inputs and outputs.
Distribution accessor.
Function accessor.
Accessor to the description of the inputs.
Accessor to the number of the inputs.
Integration algorithm accessor.
getMarginal
(*args)Accessor to marginal.
getName
()Accessor to the object's name.
Accessor to the description of the outputs.
Accessor to the number of the outputs.
PDF threshold accessor.
Accessor to the parameter values.
Accessor to the parameter description.
Accessor to the dimension of the parameter.
hasName
()Test if the object is named.
Accessor to the validity flag.
isLinear
()Accessor to the linearity of the evaluation.
isLinearlyDependent
(index)Accessor to the linearity of the evaluation with regard to a specific variable.
parameterGradient
(inP)Gradient against the parameters.
setAlpha
(alpha)Probability levels accessor.
setCheckOutput
(checkOutput)Accessor to the output verification flag.
setDescription
(description)Accessor to the description of the inputs and outputs.
setDistribution
(distribution)Distribution accessor.
setFunction
(function)Function accessor.
setInputDescription
(inputDescription)Accessor to the description of the inputs.
setIntegrationAlgorithm
(algorithm)Integration algorithm accessor.
setName
(name)Accessor to the object's name.
setOutputDescription
(outputDescription)Accessor to the description of the outputs.
setPDFThreshold
(threshold)PDF threshold accessor.
setParameter
(parameters)Accessor to the parameter values.
setParameterDescription
(description)Accessor to the parameter description.
setStopCallback
(callBack[, state])Set up a stop callback.
- __init__(*args)¶
- draw(*args)¶
Draw the output of function as a
Graph
.- Available usages:
draw(inputMarg, outputMarg, CP, xiMin, xiMax, ptNb, scale)
draw(firstInputMarg, secondInputMarg, outputMarg, CP, xiMin_xjMin, xiMax_xjMax, ptNbs, scale, isFilled)
draw(xiMin, xiMax, ptNb, scale)
draw(xiMin_xjMin, xiMax_xjMax, ptNbs, scale)
- Parameters:
- outputMarg, inputMargint,
outputMarg is the index of the marginal to draw as a function of the marginal with index inputMarg.
- firstInputMarg, secondInputMargint,
In the 2D case, the marginal outputMarg is drawn as a function of the two marginals with indexes firstInputMarg and secondInputMarg.
- CPsequence of float
Central point.
- xiMin, xiMaxfloat
Define the interval where the curve is plotted.
- xiMin_xjMin, xiMax_xjMaxsequence of float of dimension 2.
In the 2D case, define the intervals where the curves are plotted.
- ptNbint
The number of points to draw the curves.
- ptNbslist of int of dimension 2
The number of points to draw the contour in the 2D case.
- scalebool
scale indicates whether the logarithmic scale is used either for one or both axes:
ot.GraphImplementation.NONE or 0: no log scale is used,
ot.GraphImplementation.LOGX or 1: log scale is used only for horizontal data,
ot.GraphImplementation.LOGY or 2: log scale is used only for vertical data,
ot.GraphImplementation.LOGXY or 3: log scale is used for both data.
- isFilledbool
isFilled indicates whether the contour graph is filled or not
Notes
We note where and , with and .
In the first usage:
Draws graph of the given 1D outputMarg marginal as a function of the given 1D inputMarg marginal with respect to the variation of in the interval , when all the other components of are fixed to the corresponding ones of the central point CP. Then it draws the graph: .
In the second usage:
Draws the iso-curves of the given outputMarg marginal as a function of the given 2D firstInputMarg and secondInputMarg marginals with respect to the variation of in the interval , when all the other components of are fixed to the corresponding ones of the central point CP. Then it draws the graph: .
In the third usage:
The same as the first usage but only for function .
In the fourth usage:
The same as the second usage but only for function .
Examples
>>> import openturns as ot >>> from openturns.viewer import View >>> f = ot.SymbolicFunction(['x'], ['sin(2*pi_*x)*exp(-x^2/2)']) >>> graph = f.draw(-1.2, 1.2, 100) >>> View(graph).show()
- getAlpha()¶
Probability levels accessor.
- Returns:
- alphasequence of float in
Probability levels
- getCallsNumber()¶
Accessor to the number of times the function has been called.
- Returns:
- calls_numberint
Integer that counts the number of times the function has been called since its creation.
- getCheckOutput()¶
Accessor to the output verification flag.
- Returns:
- check_outputbool
Whether to check return values for nan or inf.
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getDescription()¶
Accessor to the description of the inputs and outputs.
- Returns:
- description
Description
Description of the inputs and the outputs.
- description
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getDescription()) [x1,x2,y0]
- getDistribution()¶
Distribution accessor.
- Returns:
- distribution
openturns.Distribution
Parameters distribution.
- distribution
- getFunction()¶
Function accessor.
- Returns:
- function
openturns.Function
Parametric function.
- function
- getInputDescription()¶
Accessor to the description of the inputs.
- Returns:
- description
Description
Description of the inputs.
- description
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getInputDescription()) [x1,x2]
- getInputDimension()¶
Accessor to the number of the inputs.
- Returns:
- number_inputsint
Number of inputs.
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getInputDimension()) 2
- getIntegrationAlgorithm()¶
Integration algorithm accessor.
- Returns:
- algorithm
openturns.IntegrationAlgorithm
Algorithm used to compute the exact value of the measure.
- algorithm
- getMarginal(*args)¶
Accessor to marginal.
- Parameters:
- indicesint or list of ints
Set of indices for which the marginal is extracted.
- Returns:
- marginal
Function
Function corresponding to either or , with and .
- marginal
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getOutputDescription()¶
Accessor to the description of the outputs.
- Returns:
- description
Description
Description of the outputs.
- description
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getOutputDescription()) [y0]
- getOutputDimension()¶
Accessor to the number of the outputs.
- Returns:
- number_outputsint
Number of outputs.
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getOutputDimension()) 1
- getPDFThreshold()¶
PDF threshold accessor.
- Returns:
- thresholdfloat
PDF threshold under which the contribution is not computed.
- getParameterDescription()¶
Accessor to the parameter description.
- Returns:
- parameter
Description
The parameter description.
- parameter
- getParameterDimension()¶
Accessor to the dimension of the parameter.
- Returns:
- parameter_dimensionint
Dimension of the parameter.
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- isActualImplementation()¶
Accessor to the validity flag.
- Returns:
- is_implbool
Whether the implementation is valid.
- isLinear()¶
Accessor to the linearity of the evaluation.
- Returns:
- linearbool
True if the evaluation is linear, False otherwise.
- isLinearlyDependent(index)¶
Accessor to the linearity of the evaluation with regard to a specific variable.
- Parameters:
- indexint
The index of the variable with regard to which linearity is evaluated.
- Returns:
- linearbool
True if the evaluation is linearly dependent on the specified variable, False otherwise.
- parameterGradient(inP)¶
Gradient against the parameters.
- Parameters:
- xsequence of float
Input point
- Returns:
- parameter_gradient
Matrix
The parameters gradient computed at x.
- parameter_gradient
- setAlpha(alpha)¶
Probability levels accessor.
- Parameters:
- alphasequence of float in
Probability levels
- setCheckOutput(checkOutput)¶
Accessor to the output verification flag.
- Parameters:
- check_outputbool
Whether to check return values for nan or inf.
- setDescription(description)¶
Accessor to the description of the inputs and outputs.
- Parameters:
- descriptionsequence of str
Description of the inputs and the outputs.
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getDescription()) [x1,x2,y0] >>> f.setDescription(['a','b','y']) >>> print(f.getDescription()) [a,b,y]
- setDistribution(distribution)¶
Distribution accessor.
- Parameters:
- distribution
openturns.Distribution
Parameters distribution.
- distribution
- setFunction(function)¶
Function accessor.
- Parameters:
- function
openturns.Function
Parametric function.
- function
- setInputDescription(inputDescription)¶
Accessor to the description of the inputs.
- Returns:
- description
Description
Description of the inputs.
- description
- setIntegrationAlgorithm(algorithm)¶
Integration algorithm accessor.
- Parameters:
- algorithm
openturns.IntegrationAlgorithm
Algorithm used to compute the exact value of the measure.
- algorithm
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
- setOutputDescription(outputDescription)¶
Accessor to the description of the outputs.
- Returns:
- description
Description
Description of the outputs.
- description
- setPDFThreshold(threshold)¶
PDF threshold accessor.
- Parameters:
- thresholdfloat
PDF threshold under which the contribution is not computed.
- setParameter(parameters)¶
Accessor to the parameter values.
- Parameters:
- parametersequence of float
The parameter values.
- setParameterDescription(description)¶
Accessor to the parameter description.
- Parameters:
- parameter
Description
The parameter description.
- parameter
- setStopCallback(callBack, state=None)¶
Set up a stop callback.
Can be used to programmatically stop an evaluation.
- Parameters:
- callbackcallable
Returns a bool deciding whether to stop or continue.