Sample manipulationΒΆ
This example will describe the main statistical functionalities on data through the Sample object.
[1]:
from __future__ import print_function
import openturns as ot
[2]:
# Generate a sample of dimension 3
sample = ot.Normal(3).getSample(500)
sample[:5]
[2]:
X0 | X1 | X2 | |
---|---|---|---|
0 | 0.6082016512187646 | -1.2661731022166567 | -0.43826561996041397 |
1 | 1.2054782008285756 | -2.1813852346165143 | 0.3500420865302907 |
2 | -0.3550070491856397 | 1.437249310140903 | 0.8106679824694837 |
3 | 0.79315601145977 | -0.4705255986325704 | 0.26101793529769673 |
4 | -2.2900619818700854 | -1.2828852904549808 | -1.311781115463341 |
[26]:
# Get min and max per component
sample.getMin(), sample.getMax()
[26]:
(class=Point name=Unnamed dimension=3 values=[-2.4067,-3.24637,-3.09834],
class=Point name=Unnamed dimension=3 values=[3.15958,3.01263,2.63821])
[4]:
# Get the range per component (xmax-xmin)
sample.computeRange()
[4]:
[5.56628,6.25899,5.73655]
[5]:
# Get the mean per component
sample.computeMean()
[5]:
[-0.0421682,-0.0168704,0.0580127]
[6]:
# Get the standard deviation per component
sample.computeStandardDeviationPerComponent()
[6]:
[0.96048,1.01449,0.995846]
[7]:
# Get the Variance per component
sample.computeVariance()
[7]:
[0.922521,1.02919,0.991709]
[8]:
# Get the Skewness per component
sample.computeSkewness()
[8]:
[0.200045,-0.0429991,-0.0712751]
[9]:
# Get the Kurtosis per component
sample.computeKurtosis()
[9]:
[3.15748,3.03583,3.02072]
[10]:
# Get the median per component
sample.computeMedian()
[10]:
[-0.0497493,-0.0559353,0.0312677]
[11]:
# Get the empirical 0.95 quantile per component
sample.computeQuantilePerComponent(0.95)
[11]:
[1.54329,1.64875,1.69843]
[12]:
# Get the sample covariance
sample.computeCovariance()
[12]:
[[ 0.922521 0.0383477 0.051918 ]
[ 0.0383477 1.02919 0.0143437 ]
[ 0.051918 0.0143437 0.991709 ]]
[13]:
# Get the sample standard deviation
sample.computeStandardDeviation()
[13]:
[[ 0.96048 0 0 ]
[ 0.0399256 1.01371 0 ]
[ 0.0540543 0.0120208 0.994305 ]]
[14]:
# Get the sample Pearson correlation matrix
sample.computePearsonCorrelation()
[14]:
[[ 1 0.0393553 0.0542798 ]
[ 0.0393553 1 0.0141978 ]
[ 0.0542798 0.0141978 1 ]]
[15]:
# Get the sample Kendall correlation matrix
sample.computeKendallTau()
[15]:
[[ 1 0.0367936 0.0292906 ]
[ 0.0367936 1 0.0209539 ]
[ 0.0292906 0.0209539 1 ]]
[16]:
# Get the sample Spearman correlation matrix
sample.computeSpearmanCorrelation()
[16]:
[[ 1 0.0544864 0.0444143 ]
[ 0.0544864 1 0.0313186 ]
[ 0.0444143 0.0313186 1 ]]
[17]:
# Get the value of the empirical CDF at a point
point = [1.1, 2.2, 3.3]
sample.computeEmpiricalCDF(point)
[17]:
0.862