Estimate moments from sampleΒΆ
In this example we are going to estimate statistical moments from a sample, eventually from an output variable of interest.
[1]:
from __future__ import print_function
import openturns as ot
[2]:
# Create a sample
# model f
model = ot.SymbolicFunction(["x1", "x2"], ["x1^2+x2", "x2^2+x1"])
# input vector X
inputDist = ot.ComposedDistribution([ot.Normal()] * 2, ot.IndependentCopula(2))
inputDist.setDescription(['X1', 'X2'])
inputVector = ot.RandomVector(inputDist)
# output vector Y=f(X)
output = ot.CompositeRandomVector(model, inputVector)
# sample Y
size = 1000
sample = output.getSample(size)
[3]:
# Estimate mean
sample.computeMean()
[3]:
[0.928558,1.01799]
[4]:
# Estimate standard deviation
sample.computeStandardDeviation()
[4]:
[[ 1.66702 0 ]
[ 0.0547869 1.81849 ]]
[5]:
# Estimate variance
sample.computeVariance()
[5]:
[2.77895,3.30989]
[6]:
# Estimate skewness
sample.computeSkewness()
[6]:
[1.40965,1.73437]
[7]:
# Estimate kurtosis
sample.computeKurtosis()
[7]:
[6.84373,7.96431]