Parametrization of a simulation algorithmΒΆ
In this example we are going to parameterize a simulation algorithm:
parameters linked to the number of points generated
the precision of the probability estimator
the sample storage strategy
using callbacks to monitor progress and stopping criteria.
[1]:
from __future__ import print_function
import openturns as ot
Create the joint distribution of the parameters.
[2]:
distribution_R = ot.LogNormalMuSigma(300.0, 30.0, 0.0).getDistribution()
distribution_F = ot.Normal(75e3, 5e3)
marginals = [distribution_R, distribution_F]
distribution = ot.ComposedDistribution(marginals)
Create the model.
[3]:
model = ot.SymbolicFunction(['R', 'F'], ['R-F/(pi_*100.0)'])
Create the event whose probability we want to estimate.
[4]:
vect = ot.RandomVector(distribution)
G = ot.CompositeRandomVector(model, vect)
event = ot.ThresholdEvent(G, ot.Less(), 0.0)
Create a Monte Carlo algorithm.
[5]:
experiment = ot.MonteCarloExperiment()
algo = ot.ProbabilitySimulationAlgorithm(event, experiment)
Criteria 1: Define the Maximum Coefficient of variation of the probability estimator.
[6]:
algo.setMaximumCoefficientOfVariation(0.05)
Criteria 2: Define the number of iterations of the simulation.
[7]:
algo.setMaximumOuterSampling(int(1e4))
The block size parameter represents the number of samples evaluated per iteration, useful for parallelization.
[8]:
algo.setBlockSize(2)
HistoryStrategy to store the values of the probability used to draw the convergence graph.
[9]:
# Null strategy
algo.setConvergenceStrategy(ot.Null())
# Full strategy
algo.setConvergenceStrategy(ot.Full())
# Compact strategy: N points
N = 1000
algo.setConvergenceStrategy(ot.Compact(N))
Use a callback to display the progress every 10%.
[10]:
def progress(p):
if p >= progress.t:
progress.t += 10.0
print('progress=', p, '%')
return False
progress.t = 10.0
algo.setProgressCallback(progress)
Use a callback to stop the simulation.
[11]:
def stop():
# here we never stop, but we could
return False
algo.setStopCallback(stop)
[12]:
algo.run()
progress= 10.0 %
progress= 20.0 %
progress= 30.0 %
progress= 40.0 %
progress= 50.0 %
progress= 60.0 %
progress= 70.0 %
progress= 80.0 %
progress= 90.0 %
progress= 100.0 %
Retrieve results.
[13]:
result = algo.getResult()
probability = result.getProbabilityEstimate()
print('Pf=', probability)
Pf= 0.02859999999999999