BootstrapExperiment

(Source code, png, hires.png, pdf)

../../_images/BootstrapExperiment.png
class BootstrapExperiment(*args)

Bootstrap experiment.

Available constructors:

BootstrapExperiment(sample)

Parameters
sample2-d sequence of float

Points to defined a UserDefined distribution \mu.

Notes

BootstrapExperiment is a random weighted design of experiments. To call the BootstrapExperiment constructor is equivalent to call the WeightedExperiment constructor as follows: WeightedExperiment(UserDefined(sample), sample.getSize()).

Examples

>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> sample = [[i,i+1] for i in range(5)]
>>> experiment = ot.BootstrapExperiment(sample)
>>> print(experiment.generate())
    [ v0 v1 ]
0 : [ 4  5  ]
1 : [ 1  2  ]
2 : [ 1  2  ]
3 : [ 1  2  ]
4 : [ 2  3  ]
>>> print(experiment.getDistribution())
UserDefined({x = [0,1], p = 0.2}, {x = [1,2], p = 0.2}, {x = [2,3], p = 0.2}, {x = [3,4], p = 0.2}, {x = [4,5], p = 0.2})

Methods

GenerateSelection(size, length)

Generate a list of indices of points with replacement.

generate(self)

Generate points according to the type of the experiment.

generateWithWeights(self)

Generate points and their associated weight according to the type of the experiment.

getClassName(self)

Accessor to the object’s name.

getDistribution(self)

Accessor to the distribution.

getId(self)

Accessor to the object’s id.

getName(self)

Accessor to the object’s name.

getShadowedId(self)

Accessor to the object’s shadowed id.

getSize(self)

Accessor to the size of the generated sample.

getVisibility(self)

Accessor to the object’s visibility state.

hasName(self)

Test if the object is named.

hasUniformWeights(self)

Ask whether the experiment has uniform weights.

hasVisibleName(self)

Test if the object has a distinguishable name.

setDistribution(self, distribution)

Accessor to the distribution.

setName(self, name)

Accessor to the object’s name.

setShadowedId(self, id)

Accessor to the object’s shadowed id.

setSize(self, size)

Accessor to the size of the generated sample.

setVisibility(self, visible)

Accessor to the object’s visibility state.

__init__(self, \*args)

Initialize self. See help(type(self)) for accurate signature.

static GenerateSelection(size, length)

Generate a list of indices of points with replacement.

Parameters
sizepositive int

Size of the set of indices in which the indices are chosen.

lengthpositive int

Number of indices to choose.

Returns
selectionIndices

Sequence of size length of indices i such that 0\leq i<size.

generate(self)

Generate points according to the type of the experiment.

Returns
sampleSample

Points (\Xi_i)_{i \in I} which constitute the design of experiments with card I = size. The sampling method is defined by the nature of the weighted experiment.

Examples

>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
>>> sample = myExperiment.generate()
>>> print(sample)
    [ X0        X1        ]
0 : [  0.608202 -1.26617  ]
1 : [ -0.438266  1.20548  ]
2 : [ -2.18139   0.350042 ]
3 : [ -0.355007  1.43725  ]
4 : [  0.810668  0.793156 ]
generateWithWeights(self)

Generate points and their associated weight according to the type of the experiment.

Returns
sampleSample

The points which constitute the design of experiments. The sampling method is defined by the nature of the experiment.

weightsPoint of size cardI

Weights (\omega_i)_{i \in I} associated with the points. By default, all the weights are equal to 1/cardI.

Examples

>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
>>> sample, weights = myExperiment.generateWithWeights()
>>> print(sample)
    [ X0        X1        ]
0 : [  0.608202 -1.26617  ]
1 : [ -0.438266  1.20548  ]
2 : [ -2.18139   0.350042 ]
3 : [ -0.355007  1.43725  ]
4 : [  0.810668  0.793156 ]
>>> print(weights)
[0.2,0.2,0.2,0.2,0.2]
getClassName(self)

Accessor to the object’s name.

Returns
class_namestr

The object class name (object.__class__.__name__).

getDistribution(self)

Accessor to the distribution.

Returns
distributionDistribution

Distribution used to generate the set of input data.

getId(self)

Accessor to the object’s id.

Returns
idint

Internal unique identifier.

getName(self)

Accessor to the object’s name.

Returns
namestr

The name of the object.

getShadowedId(self)

Accessor to the object’s shadowed id.

Returns
idint

Internal unique identifier.

getSize(self)

Accessor to the size of the generated sample.

Returns
sizepositive int

Number cardI of points constituting the design of experiments.

getVisibility(self)

Accessor to the object’s visibility state.

Returns
visiblebool

Visibility flag.

hasName(self)

Test if the object is named.

Returns
hasNamebool

True if the name is not empty.

hasUniformWeights(self)

Ask whether the experiment has uniform weights.

Returns
hasUniformWeightsbool

Whether the experiment has uniform weights.

hasVisibleName(self)

Test if the object has a distinguishable name.

Returns
hasVisibleNamebool

True if the name is not empty and not the default one.

setDistribution(self, distribution)

Accessor to the distribution.

Parameters
distributionDistribution

Distribution used to generate the set of input data.

setName(self, name)

Accessor to the object’s name.

Parameters
namestr

The name of the object.

setShadowedId(self, id)

Accessor to the object’s shadowed id.

Parameters
idint

Internal unique identifier.

setSize(self, size)

Accessor to the size of the generated sample.

Parameters
sizepositive int

Number cardI of points constituting the design of experiments.

setVisibility(self, visible)

Accessor to the object’s visibility state.

Parameters
visiblebool

Visibility flag.