Sample¶
-
class
Sample
(*args)¶ Sample of real vectors.
- Available constructors:
Sample(size, dim)
Sample(size, point)
Sample(other, first, last)
- Parameters
- sizeint, , optional
The sample size. Default creates an empty sample with dimension 1.
- dimensionint, , optional
The real vectors dimension. Default creates an empty sample with dimension 1.
- point
Point
or flat (1d) array, list or tuple of floats, optional The point that will be repeated along the sample. Default creates a sample filled with zeros (null vectors).
- other
Sample
The sample contains points to copy.
- firstint,
The index of the first point to copy.
- lastint, , optional
The index after the last point to copy.
See also
Examples
Create a Sample
>>> import openturns as ot >>> import numpy as np >>> sample = ot.Sample(3, 2) >>> print(sample) 0 : [ 0 0 ] 1 : [ 0 0 ] 2 : [ 0 0 ] >>> sample = ot.Sample(3, [1.0, 2.0]) >>> print(sample) 0 : [ 1 2 ] 1 : [ 1 2 ] 2 : [ 1 2 ]
Create a Sample from a (2d) array, list or tuple
>>> import numpy as np >>> sample = ot.Sample(np.array([(1.0, 2.0), (3.0, 4.0), (5.0, 6.0)]))
and back
>>> z = np.array(sample)
Eventually samples may also be generated from probability distributions or experiments
>>> random_sample = ot.Normal(2).getSample(10) >>> experiment = ot.LHSExperiment(ot.Normal(2), 10).generate()
Translation: addition or subtraction of a (compatible) sample or a point, or a scalar which is promoted into a point of compatible dimension with equal components
>>> print(sample + sample) 0 : [ 2 4 ] 1 : [ 6 8 ] 2 : [ 10 12 ] >>> print(sample - sample) 0 : [ 0 0 ] 1 : [ 0 0 ] 2 : [ 0 0 ] >>> print(sample - sample[0]) 0 : [ 0 0 ] 1 : [ 2 2 ] 2 : [ 4 4 ] >>> print(sample - sample[0, 0]) 0 : [ 0 1 ] 1 : [ 2 3 ] 2 : [ 4 5 ]
Methods
ImportFromCSVFile
(\*args)Static method for building a sample from a CSV file.
ImportFromTextFile
(\*args)Static method for building a sample from a text file.
add
(self, \*args)Append a vector (in-place).
asPoint
(self)Accessor to the internal linear storage for 1D sample.
clear
(self)Erase all values.
computeCenteredMoment
(self, k)Estimate componentwise centered moments.
computeCovariance
(self)Estimate the covariance matrix.
computeEmpiricalCDF
(self, point[, tail])Estimate the empirical cumulative distribution function (ECDF).
computeKendallTau
(self)Estimate the Kendall coefficients matrix.
computeKurtosis
(self)Estimate the componentwise kurtosis (4th order centered normalized moment).
computeLinearCorrelation
(self)(ditch me?)
computeMean
(self)Estimate the mean vector.
computeMedian
(self)Estimate the componentwise medians (50%-quantiles).
Estimate the Pearson correlation matrix.
computeQuantile
(self, \*args)Estimate the quantile of the joint distribution underlying the sample.
computeQuantilePerComponent
(self, \*args)Estimate the componentwise quantiles.
computeRange
(self)Compute the range per component.
computeRawMoment
(self, k)Compute the raw (non-centered) moment per component.
computeSkewness
(self)Estimate the componentwise skewness (3rd order centered normalized moment).
Estimate the Spearman correlation matrix.
computeStandardDeviation
(self)Compute the Cholesky factor of the covariance matrix.
Estimate the componentwise standard deviations.
computeVariance
(self)Estimate the componentwise variances.
erase
(self, \*args)Erase point(s) at or between index(es) (in-place).
exportToCSVFile
(self, \*args)Dump the sample to a CSV file.
find
(self, point)Get the position of a point in the sample.
getClassName
(self)Accessor to the object’s name.
getDescription
(self)Accessor to the componentwise description.
getDimension
(self)Accessor to the sample’s dimension.
getId
(self)Accessor to the object’s id.
getImplementation
(self)Accessor to the underlying implementation.
getMarginal
(self, \*args)Accessor to sample marginal(s) (column(s)).
getMax
(self)Accessor to the componentwise maximum values.
getMin
(self)Accessor to the componentwise minimum values.
getName
(self)Accessor to the object’s name.
getSize
(self)Accessor to the sample size.
rank
(self, \*args)Compute the sample (componentwise) ranks.
select
(self, indices)Select points in a sample.
setDescription
(self, description)Accessor to the componentwise description.
setName
(self, name)Accessor to the object’s name.
sort
(self, \*args)Sort the sample.
sortAccordingToAComponent
(self, index)Sort the sample according to the given component.
sortAccordingToAComponentInPlace
(self, index)Sort the sample in place according to the given component.
sortInPlace
(self)Sort the sample in place.
sortUnique
(self)Sort the sample and remove duplicate points.
sortUniqueInPlace
(self)Sort the sample in place and remove duplicate points.
split
(self, index)Trunk the sample.
stack
(self, sample)Stack (horizontally) the given sample to the current one (in-place).
-
__init__
(self, \*args)¶ Initialize self. See help(type(self)) for accurate signature.
-
static
ImportFromCSVFile
(\*args)¶ Static method for building a sample from a CSV file.
- Parameters
- file_namestr
Path to CSV file.
- separatorstr
Separating string. Default uses csv-file-separator from the
ResourceMap
.
- Returns
- sample
Sample
Sample loaded from the CSV file.
- sample
See also
Notes
The file may or may not contain a header line (columns spanned with strings delimited with quotes). If it does contain such a header line, it will be used for setting the sample description using
setDescription()
.Examples
>>> import openturns as ot
Let’s first create a sample CSV file
>>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> sample.exportToCSVFile('sample.csv')
And load it back
>>> loaded_sample = ot.Sample.ImportFromCSVFile('sample.csv') >>> assert sample == loaded_sample
-
static
ImportFromTextFile
(\*args)¶ Static method for building a sample from a text file.
- Parameters
- file_namestr
Path to text file.
- separatorstr
Separating string. Default uses a blank space.
- skipped_linesint
Number of lines skipped. Default is 0.
- Returns
- sample
Sample
Sample loaded from the text file.
- sample
See also
Notes
The file may or may not contain a header line (columns spanned with strings delimited with quotes). If it does contain such a header line, it will be used for setting the sample description using
setDescription()
. It can also contain some comments, if a line starts with one of the characters contained in Sample-CommentsMarker from theResourceMap
.Examples
>>> import openturns as ot
Let’s first create a sample text file
>>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> sample.exportToCSVFile('sample.txt', ' ')
And load it back
>>> loaded_sample = ot.Sample.ImportFromTextFile('sample.txt') >>> assert sample == loaded_sample
-
add
(self, \*args)¶ Append a vector (in-place).
- Parameters
- pointsequence of float
The point to append.
Examples
>>> import openturns as ot >>> sample = ot.Sample(3, 2) >>> sample.add([1.0, 2.0]) >>> print(sample) 0 : [ 0 0 ] 1 : [ 0 0 ] 2 : [ 0 0 ] 3 : [ 1 2 ]
-
asPoint
(self)¶ Accessor to the internal linear storage for 1D sample.
- Returns
- values
Point
Flat internal representation of the sample.
- values
Notes
Available only for 1D sample.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal().getSample(5) >>> print(sample) [ X0 ] 0 : [ 0.608202 ] 1 : [ -1.26617 ] 2 : [ -0.438266 ] 3 : [ 1.20548 ] 4 : [ -2.18139 ] >>> print(sample.asPoint()) [0.608202,-1.26617,-0.438266,1.20548,-2.18139]
-
clear
(self)¶ Erase all values.
-
computeCenteredMoment
(self, k)¶ Estimate componentwise centered moments.
- Parameters
- kint
The centered moment’s order.
- Returns
- m
Point
Componentwise centered moment of order estimated from the sample.
- m
Notes
The centered moment of order is estimated as follows:
where is the estimator of the mean.
These estimators are the natural (possibly biased) estimators. For unbiased estimators use the other dedicated methods such as
computeVariance()
for the variance.Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeCenteredMoment(2)) [0.915126,0.873119]
-
computeCovariance
(self)¶ Estimate the covariance matrix.
- Returns
- covariance
CovarianceMatrix
Covariance matrix estimated from the sample.
- covariance
Notes
The covariance matrix is estimated as follows:
where denotes the estimate of the mean.
This is an unbiased estimator.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeCovariance()) [[ 0.946682 0.0182104 ] [ 0.0182104 0.903226 ]]
-
computeEmpiricalCDF
(self, point, tail=False)¶ Estimate the empirical cumulative distribution function (ECDF).
- Parameters
- xsequence of float
CDF input.
- survivalbool, optional
A flag telling whether this should estimate the empirical cumulative distribution function or the empirical survival function. Default is False and estimates the CDF.
- Returns
- pfloat,
Empirical CDF or SF value at point x.
Notes
The empirical cumulative distribution function (CDF) is estimated as follows:
The empirical survival function (SF) is estimated in a similar way:
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeEmpiricalCDF(sample[0])) 0.1
-
computeKendallTau
(self)¶ Estimate the Kendall coefficients matrix.
- Returns
- tau
CorrelationMatrix
Kendall coefficients matrix estimated from the sample.
- tau
Notes
This uses an external implementation provided under the Boost Software License by David Simcha based on the paper by [knight1966]. It actually switches between two implementations depending on the sample size:
The most basic implementation performing in is used when the sample size is less than SampleImplementation-SmallKendallTau from the
ResourceMap
.The other more complex implementation performing in is used for larger samples.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeKendallTau()) [[ 1 0.00689655 ] [ 0.00689655 1 ]]
-
computeKurtosis
(self)¶ Estimate the componentwise kurtosis (4th order centered normalized moment).
- Returns
- kurtosis
Point
Componentwise kurtosis estimated from the sample.
- kurtosis
Notes
The componentwise kurtosis are estimated as follows:
where is the estimate of the mean.
This estimator is unbiased.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeKurtosis()) [3.27647,2.40275]
-
computeLinearCorrelation
(self)¶ (ditch me?)
-
computeMean
(self)¶ Estimate the mean vector.
- Returns
- mean
Point
Mean vector estimated from the sample.
- mean
Notes
The mean is estimated as follows:
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeMean()) [-0.0512622,0.136653]
-
computeMedian
(self)¶ Estimate the componentwise medians (50%-quantiles).
- Returns
- median
Point
Median vector estimated from the sample.
- median
See also
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeMedian()) [0.221141,0.108703]
-
computePearsonCorrelation
(self)¶ Estimate the Pearson correlation matrix.
- Returns
- rho
CorrelationMatrix
Pearson correlation matrix estimated from the sample.
- rho
Notes
The Pearson correlation matrix is estimated as follows:
where denotes the estimate of the covariance.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computePearsonCorrelation()) [[ 1 0.0196933 ] [ 0.0196933 1 ]]
-
computeQuantile
(self, \*args)¶ Estimate the quantile of the joint distribution underlying the sample.
- Parameters
- pfloat, , or sequence of float
Input probability level.
- Returns
- Raises
- NotImplementedYetErrorIf the dimension is greater than 1.
See also
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(1).getSample(30) >>> print(sample.computeQuantile(.2)) [-0.947394]
-
computeQuantilePerComponent
(self, \*args)¶ Estimate the componentwise quantiles.
- Parameters
- pfloat, , or sequence of float
Input probability level.
- Returns
Notes
The present implementation interpolates the quantile between the two adjacent empirical quantiles ( and ):
where .
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeQuantilePerComponent(0.2)) [-0.696412,-0.767092]
-
computeRange
(self)¶ Compute the range per component.
- Returns
- range
Point
Componentwise ranges estimated from the sample.
- range
Notes
The statistical range is defined as the deviation between the maximal and the minimal value of the sample.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeRange()) [4.02827,3.49949]
-
computeRawMoment
(self, k)¶ Compute the raw (non-centered) moment per component.
- Parameters
- kint,
Componentwise moment’s order.
- Returns
- moments
Point
Componentwise moments estimated from the sample.
- moments
Notes
The (raw) moment of order is estimated as follows:
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeRawMoment(2)) [0.917754,0.891793]
-
computeSkewness
(self)¶ Estimate the componentwise skewness (3rd order centered normalized moment).
- Returns
- skewness
Point
Componentwise skewness estimated from the sample.
- skewness
Notes
The componentwise skewnesses are estimated as follows:
where is the estimate of the mean.
This is an unbiased estimator.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeSkewness()) [-0.69393,0.231931]
-
computeSpearmanCorrelation
(self)¶ Estimate the Spearman correlation matrix.
- Returns
- rho
CorrelationMatrix
Spearman correlation matrix estimated from the sample.
- rho
See also
Notes
The Spearman correlation matrix is estimated as the Pearson correlation matrix of the ranks sample (i.e. using self.rank().computePearsonCorrelation()).
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeSpearmanCorrelation()) [[ 1 -0.00556174 ] [ -0.00556174 1 ]]
-
computeStandardDeviation
(self)¶ Compute the Cholesky factor of the covariance matrix.
Estimated from the sample.
- Returns
- L
TriangularMatrix
Lower (left) Cholesky factor of the covariance matrix estimated from the sample.
- L
- Raises
- RuntimeErrorIf the estimated covariance matrix is not positive definite. In
this case, you might want to estimate the covariance and manually shrink negative eigenvalues.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeStandardDeviation()) [[ 0.972976 0 ] [ 0.0187161 0.950198 ]]
-
computeStandardDeviationPerComponent
(self)¶ Estimate the componentwise standard deviations.
- Returns
- standard_deviations
Point
Componentwise standard deviation estimated from the sample.
- standard_deviations
See also
Notes
The componentwise standard deviations are estimated as the square root of the componentwise variances.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeStandardDeviationPerComponent()) [0.972976,0.950382]
-
computeVariance
(self)¶ Estimate the componentwise variances.
- Returns
- variances
Point
Componentwise variances estimated from the sample.
- variances
Notes
The componentwise variances are estimated as follows:
where is the estimate of the mean.
This estimator is unbiased.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.computeVariance()) [0.946682,0.903226]
-
erase
(self, \*args)¶ Erase point(s) at or between index(es) (in-place).
- Parameters
- fint,
The index of the first point to erase.
- lint, , optional
The index after the last point to erase. Default uses l = f + 1 and only removes sample[f].
- Returns
- ——-
- erased_sample
Sample
Erased sample [sample[:i_start:], sample[i_stop::]].
Examples
>>> import openturns as ot >>> sample = ot.Sample([[i] for i in range(5)]) >>> print(sample) 0 : [ 0 ] 1 : [ 1 ] 2 : [ 2 ] 3 : [ 3 ] 4 : [ 4 ] >>> sample.erase(1, 3) >>> print(sample) 0 : [ 0 ] 1 : [ 3 ] 2 : [ 4 ]
-
exportToCSVFile
(self, \*args)¶ Dump the sample to a CSV file.
- Parameters
- file_namestr
Path to CSV file.
- separatorstr
Separating string. Default uses csv-file-separator from the
ResourceMap
.
See also
Notes
This will create a header line with componentwise descriptions (obtained from
getDescription()
) between quotes as column names.Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> sample.exportToCSVFile('sample.csv', '; ')
-
find
(self, point)¶ Get the position of a point in the sample.
- Parameters
- pointsequence of float
The wanted point.
- Returns
- indexint,
Returns if the point does not belong to the sample.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(30) >>> print(sample.find(sample[10])) 10 >>> print(sample.find([0.0, 0.0])) 30
-
getClassName
(self)¶ Accessor to the object’s name.
- Returns
- class_namestr
The object class name (object.__class__.__name__).
-
getDescription
(self)¶ Accessor to the componentwise description.
- Returns
- description
Description
Description of the sample’s components.
- description
See also
-
getDimension
(self)¶ Accessor to the sample’s dimension.
- Returns
- nint
The number of components of the points in the sample.
-
getId
(self)¶ Accessor to the object’s id.
- Returns
- idint
Internal unique identifier.
-
getImplementation
(self)¶ Accessor to the underlying implementation.
- Returns
- implImplementation
The implementation class.
-
getMarginal
(self, \*args)¶ Accessor to sample marginal(s) (column(s)).
- Parameters
- indicesint, sequence of int, or sequence of str
The identifiers of the wanted marginal(s). When the description contains duplicate labels, the first marginal is picked up.
- Returns
- sample
Sample
A subsample of the present sample with the requested marginal(s).
- sample
Notes
The
Sample
also implements slicing in its __getitem__ method.Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(10).getSample(3) >>> print(sample.getMarginal([1, 4])) [ X1 X4 ] 0 : [ -1.26617 -2.18139 ] 1 : [ 0.261018 -1.31178 ] 2 : [ 0.445785 0.473617 ]
-
getMax
(self)¶ Accessor to the componentwise maximum values.
- Returns
- maximum_values
Point
Componentwise maximum values.
- maximum_values
-
getMin
(self)¶ Accessor to the componentwise minimum values.
- Returns
- minimum_values
Point
Componentwise minimum values.
- minimum_values
-
getName
(self)¶ Accessor to the object’s name.
- Returns
- namestr
The name of the object.
-
getSize
(self)¶ Accessor to the sample size.
- Returns
- mint
The number points in the sample.
-
rank
(self, \*args)¶ Compute the sample (componentwise) ranks.
- Parameters
- marginal_indexint, , optional
The component whose ranks are wanted. Default computes the ranks of all the components.
- Returns
- ranks
Sample
The requested ranks.
- ranks
Notes
The ranks of a 1d sample is a list of indices that sorts the points in the ascending order. Ties (equal points) are averaged.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(3) >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] >>> print(sample.rank()) [ X0 X1 ] 0 : [ 2 0 ] 1 : [ 1 2 ] 2 : [ 0 1 ]
-
select
(self, indices)¶ Select points in a sample.
It selects the points at given locations and returns them as a new sample.
- Parameters
- indicessequence of int,
The selected indices.
- Returns
- selected_sample
Sample
The selected points as a sample.
- selected_sample
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(3) >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] >>> selected_sample = sample.select([1, 0, 1]) >>> print(selected_sample) [ X0 X1 ] 0 : [ -0.438266 1.20548 ] 1 : [ 0.608202 -1.26617 ] 2 : [ -0.438266 1.20548 ]
-
setDescription
(self, description)¶ Accessor to the componentwise description.
- Parameters
- descriptionsequence of str
Description of the sample’s components.
See also
-
setName
(self, name)¶ Accessor to the object’s name.
- Parameters
- namestr
The name of the object.
-
sort
(self, \*args)¶ Sort the sample.
- Parameters
- marginal_indexint, , optional
The component to sort. Default sorts the whole sample.
- Returns
- sorted_sample
Sample
The requested sorted sample.
- sorted_sample
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(3) >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] >>> print(sample.sort()) [ X0 X1 ] 0 : [ -2.18139 0.350042 ] 1 : [ -0.438266 1.20548 ] 2 : [ 0.608202 -1.26617 ]
-
sortAccordingToAComponent
(self, index)¶ Sort the sample according to the given component.
- Parameters
- marginal_indexint,
The component to use for sorting the sample.
- Returns
- sorted_sample
Sample
The sample sorted according to the given component.
- sorted_sample
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(3) >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] >>> print(sample.sortAccordingToAComponent(0)) [ X0 X1 ] 0 : [ -2.18139 0.350042 ] 1 : [ -0.438266 1.20548 ] 2 : [ 0.608202 -1.26617 ]
-
sortAccordingToAComponentInPlace
(self, index)¶ Sort the sample in place according to the given component.
- Parameters
- marginal_indexint,
The component to use for sorting the sample.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(3) >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] >>> sample.sortAccordingToAComponentInPlace(0) >>> print(sample) [ X0 X1 ] 0 : [ -2.18139 0.350042 ] 1 : [ -0.438266 1.20548 ] 2 : [ 0.608202 -1.26617 ]
-
sortInPlace
(self)¶ Sort the sample in place.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(3) >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] >>> sample.sortInPlace() >>> print(sample) [ X0 X1 ] 0 : [ -2.18139 0.350042 ] 1 : [ -0.438266 1.20548 ] 2 : [ 0.608202 -1.26617 ]
-
sortUnique
(self)¶ Sort the sample and remove duplicate points.
- Returns
- unique_sample
Sample
The requested sorted sample with duplicate points removed.
- unique_sample
Examples
>>> import openturns as ot >>> sample = ot.Sample([[3, 0, 3], [1, 1, 0], [0, 2, 2], [1, 1, 0]]) >>> print(sample) 0 : [ 3 0 3 ] 1 : [ 1 1 0 ] 2 : [ 0 2 2 ] 3 : [ 1 1 0 ] >>> print(sample.sortUnique()) 0 : [ 0 2 2 ] 1 : [ 1 1 0 ] 2 : [ 3 0 3 ]
-
sortUniqueInPlace
(self)¶ Sort the sample in place and remove duplicate points.
Examples
>>> import openturns as ot >>> sample = ot.Sample([[3, 0, 3], [1, 1, 0], [0, 2, 2], [1, 1, 0]]) >>> print(sample) 0 : [ 3 0 3 ] 1 : [ 1 1 0 ] 2 : [ 0 2 2 ] 3 : [ 1 1 0 ] >>> sample.sortUniqueInPlace() >>> print(sample) 0 : [ 0 2 2 ] 1 : [ 1 1 0 ] 2 : [ 3 0 3 ]
-
split
(self, index)¶ Trunk the sample.
It splits the sample before the index passed as argument and returns the remainder as new sample.
- Parameters
- indexint,
The truncation index.
- Returns
- remainder_sample
Sample
The remainder sample (everyting that comes after the truncation index).
- remainder_sample
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(3) >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] >>> remainder_sample = sample.split(1) >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] >>> print(remainder_sample) [ X0 X1 ] 0 : [ -0.438266 1.20548 ] 1 : [ -2.18139 0.350042 ]
-
stack
(self, sample)¶ Stack (horizontally) the given sample to the current one (in-place).
- Parameters
- sample
Sample
Sample to stack with compatible size.
- sample
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> sample = ot.Normal(2).getSample(3) >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] >>> another_sample = ot.Normal(2).getSample(3) >>> print(another_sample) [ X0 X1 ] 0 : [ -0.355007 1.43725 ] 1 : [ 0.810668 0.793156 ] 2 : [ -0.470526 0.261018 ] >>> sample.stack(another_sample) >>> print(sample) [ X0 X1 X0 X1 ] 0 : [ 0.608202 -1.26617 -0.355007 1.43725 ] 1 : [ -0.438266 1.20548 0.810668 0.793156 ] 2 : [ -2.18139 0.350042 -0.470526 0.261018 ]