FittingTest_Kolmogorov

FittingTest_Kolmogorov(\*args)

Perform a Kolmogorov goodness-of-fit test for 1-d continuous distributions.

Refer to Kolmogorov-Smirnov fitting test.

Parameters
sample2-d sequence of float

Tested sample.

modelDistribution or DistributionFactory

Tested distribution.

levelfloat, 0 \leq \alpha \leq 1, optional (default level = 0.05).

This is the risk \alpha of committing a Type I error, that is an incorrect rejection of a true null hypothesis.

Returns
fitted_distDistribution

Estimated distribution (if model is of type DistributionFactory).

test_resultTestResult

Test result.

Raises
TypeError :

If the distribution is not continuous or if the sample is multivariate.

Notes

The present implementation of the Kolmogorov goodness-of-fit test is two-sided.

This static method can be used in two different ways.

  • If it is called with a distribution, it is supposed to be fully specified ie no parameter has been estimated from the given sample. This uses an external C implementation of the Kolmogorov cumulative distribution function by [simard2011]. In this case, there is only one output argument, which is test_result.

  • Otherwise, the distribution is estimated using the given factory based on the given sample and the distribution of the test statistics is estimated using a Monte Carlo approach. This algorithm is known as Lilliefors’s test [Lilliefors1967]. The sample size can be configured with the FittingTest-KolmogorovSamplingSize key in ResourceMap. In this case, there are two output arguments, which are fitted_dist and test_result.

Examples

In the following example, the parameters are estimated from a sample.

>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> factory = ot.NormalFactory()
>>> ot.ResourceMap.SetAsUnsignedInteger('FittingTest-KolmogorovSamplingSize',10000)
>>> fitted_dist, test_result = ot.FittingTest.Kolmogorov(sample, factory)
>>> fitted_dist
class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[-0.0944924] sigma=class=Point name=Unnamed dimension=1 values=[0.989808] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
>>> test_result
class=TestResult name=Unnamed type=Kolmogorov Normal binaryQualityMeasure=true p-value threshold=0.05 p-value=0.5103 statistic=0.106933 description=[Normal(mu = -0.0944924, sigma = 0.989808) vs sample Normal]
>>> pvalue = test_result.getPValue()
>>> pvalue
0.5103...
>>> D = test_result.getStatistic()
>>> D
0.1069...
>>> quality = test_result.getBinaryQualityMeasure()
>>> quality
True

In the following example, the parameters of the distribution are known.

>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> test_result = ot.FittingTest.Kolmogorov(sample, distribution)
>>> test_result
class=TestResult name=Unnamed type=Kolmogorov Normal binaryQualityMeasure=true p-value threshold=0.05 p-value=0.970418 statistic=0.0845532 description=[Normal(mu = 0, sigma = 1) vs sample Normal]

In the following example, the parameters are estimated from a sample. We set the level of the Kolmogorov-Smirnov test to 0.01. This parameter value rejects a sample less often than the default value 0.05.

>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> level = 0.01
>>> test_result = ot.FittingTest.Kolmogorov(sample, distribution, level)