HypothesisTest_PartialSpearman¶
- 
HypothesisTest_PartialSpearman(firstSample, secondSample, selection, level=0.05)¶
- Test whether two sample have no rank correlation. - Available usages: - HypothesisTest_PartialSpearman(firstSample, secondSample, selection) - HypothesisTest_PartialSpearman(firstSample, secondSample, selection, level) - Parameters
- firstSample2-d sequence of float
- First tested sample, of dimension - . 
- secondSample2-d sequence of float
- Second tested sample, of dimension 1. 
- selectionsequence of integers, maximum integer value 
- List of indices selecting which subsets of the first sample will successively be tested with the second sample through the Spearman test. 
- levelpositive float 
- Threshold p-value of the test (= first kind risk), it must be - , equal to 0.05 by default. 
 
- Returns
- testResultTestResult
- Structure containing the result of the test. 
 
- testResult
 - Notes - The Partial Spearman Test is used to check hypothesis of no rank correlation between two samples: firstSample of dimension - and secondSample of dimension 1. The parameter selection enables to select specific subsets of marginals of firstSample to be tested. - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Normal() >>> sample = distribution.getSample(30) >>> func = ot.SymbolicFunction(['x'], ['x', 'x^2', 'x^3', 'sin(5*x)']) >>> testedSample = func(sample) >>> test_result = ot.HypothesisTest.PartialSpearman(testedSample, sample, [0,3]) >>> print(test_result) [class=TestResult name=Unnamed type=Spearman binaryQualityMeasure=false p-value threshold=0.05 p-value=0 statistic=1.79769e+308 description=[],class=TestResult name=Unnamed type=Spearman binaryQualityMeasure=true p-value threshold=0.05 p-value=0.570533 statistic=-0.569502 description=[]] 
 OpenTURNS
      OpenTURNS