IntersectionEvent

class IntersectionEvent(*args)

Event defined as the intersection of several events.

The occurence of all the events is necessary for the system event to occur (parallel system):

E_{sys} = \bigcap_{i=1}^N E_i

Parameters
collsequence of RandomVector

Collection of events

See also

Event

Examples

>>> import openturns as ot
>>> dim = 2
>>> X = ot.RandomVector(ot.Normal(dim))
>>> f1 = ot.SymbolicFunction(['x1', 'x2'], ['x1'])
>>> f2 = ot.SymbolicFunction(['x1', 'x2'], ['x2'])
>>> Y1 = ot.CompositeRandomVector(f1, X)
>>> Y2 = ot.CompositeRandomVector(f2, X)
>>> e1 = ot.ThresholdEvent(Y1, ot.Less(), 0.0)
>>> e2 = ot.ThresholdEvent(Y2, ot.Greater(), 0.0)
>>> event = ot.IntersectionEvent([e1, e2])

Then it can be used for sampling (or with simulation algorithms):

>>> p = event.getSample(1000).computeMean()

Methods

getAntecedent(self)

Accessor to the antecedent random vector.

getClassName(self)

Accessor to the object’s name.

getComposedEvent(self)

Accessor to the composed event.

getCovariance(self)

Accessor to the covariance of the RandomVector.

getDescription(self)

Accessor to the description of the RandomVector.

getDimension(self)

Accessor to the dimension of the RandomVector.

getDistribution(self)

Accessor to the distribution of the RandomVector.

getDomain(self)

Accessor to the domain of the Event.

getEventCollection(self)

Accessor to sub events.

getFunction(self)

Accessor to the function.

getId(self)

Accessor to the object’s id.

getMarginal(self, \*args)

Get the random vector corresponding to the i^{th} marginal component(s).

getMean(self)

Accessor to the mean of the RandomVector.

getName(self)

Accessor to the object’s name.

getOperator(self)

Accessor to the comparaison operator of the Event.

getParameter(self)

Accessor to the parameter of the distribution.

getParameterDescription(self)

Accessor to the parameter description of the distribution.

getProcess(self)

Get the stochastic process.

getRealization(self)

Compute one realization of the RandomVector.

getSample(self, size)

Compute realizations of the RandomVector.

getShadowedId(self)

Accessor to the object’s shadowed id.

getThreshold(self)

Accessor to the threshold of the Event.

getVisibility(self)

Accessor to the object’s visibility state.

hasName(self)

Test if the object is named.

hasVisibleName(self)

Test if the object has a distinguishable name.

isComposite(self)

Accessor to know if the RandomVector is a composite one.

isEvent(self)

Whether the random vector is an event.

setDescription(self, description)

Accessor to the description of the RandomVector.

setEventCollection(self, collection)

Accessor to sub events.

setName(self, name)

Accessor to the object’s name.

setParameter(self, parameters)

Accessor to the parameter of the distribution.

setShadowedId(self, id)

Accessor to the object’s shadowed id.

setVisibility(self, visible)

Accessor to the object’s visibility state.

__init__(self, \*args)

Initialize self. See help(type(self)) for accurate signature.

getAntecedent(self)

Accessor to the antecedent random vector.

Returns
antecedentRandomVector

Defined as the root cause.

getClassName(self)

Accessor to the object’s name.

Returns
class_namestr

The object class name (object.__class__.__name__).

getComposedEvent(self)

Accessor to the composed event.

Returns
composedRandomVector

Composed event.

getCovariance(self)

Accessor to the covariance of the RandomVector.

Returns
covarianceCovarianceMatrix

Covariance of the considered UsualRandomVector.

Examples

>>> import openturns as ot
>>> distribution = ot.Normal([0.0, 0.5], [1.0, 1.5], ot.CorrelationMatrix(2))
>>> randomVector = ot.RandomVector(distribution)
>>> ot.RandomGenerator.SetSeed(0)
>>> print(randomVector.getCovariance())
[[ 1    0    ]
 [ 0    2.25 ]]
getDescription(self)

Accessor to the description of the RandomVector.

Returns
descriptionDescription

Describes the components of the RandomVector.

getDimension(self)

Accessor to the dimension of the RandomVector.

Returns
dimensionpositive int

Dimension of the RandomVector.

getDistribution(self)

Accessor to the distribution of the RandomVector.

Returns
distributionDistribution

Distribution of the considered UsualRandomVector.

Examples

>>> import openturns as ot
>>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2))
>>> randomVector = ot.RandomVector(distribution)
>>> ot.RandomGenerator.SetSeed(0)
>>> print(randomVector.getDistribution())
Normal(mu = [0,0], sigma = [1,1], R = [[ 1 0 ]
 [ 0 1 ]])
getDomain(self)

Accessor to the domain of the Event.

Returns
domainDomain

Describes the domain of an event.

getEventCollection(self)

Accessor to sub events.

Returns
eventsRandomVectorCollection

List of sub events.

getFunction(self)

Accessor to the function.

Returns
functionFunction

Composed function.

getId(self)

Accessor to the object’s id.

Returns
idint

Internal unique identifier.

getMarginal(self, \*args)

Get the random vector corresponding to the i^{th} marginal component(s).

Parameters
iint or list of ints, 0\leq i < dim

Indicates the component(s) concerned. dim is the dimension of the RandomVector.

Returns
vectorRandomVector

RandomVector restricted to the concerned components.

Notes

Let’s note \vect{Y}=\Tr{(Y_1,\dots,Y_n)} a random vector and I \in [1,n] a set of indices. If \vect{Y} is a UsualRandomVector, the subvector is defined by \tilde{\vect{Y}}=\Tr{(Y_i)}_{i \in I}. If \vect{Y} is a CompositeRandomVector, defined by \vect{Y}=f(\vect{X}) with f=(f_1,\dots,f_n), f_i some scalar functions, the subvector is \tilde{\vect{Y}}=(f_i(\vect{X}))_{i \in I}.

Examples

>>> import openturns as ot
>>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2))
>>> randomVector = ot.RandomVector(distribution)
>>> ot.RandomGenerator.SetSeed(0)
>>> print(randomVector.getMarginal(1).getRealization())
[0.608202]
>>> print(randomVector.getMarginal(1).getDistribution())
Normal(mu = 0, sigma = 1)
getMean(self)

Accessor to the mean of the RandomVector.

Returns
meanPoint

Mean of the considered UsualRandomVector.

Examples

>>> import openturns as ot
>>> distribution = ot.Normal([0.0, 0.5], [1.0, 1.5], ot.CorrelationMatrix(2))
>>> randomVector = ot.RandomVector(distribution)
>>> ot.RandomGenerator.SetSeed(0)
>>> print(randomVector.getMean())
[0,0.5]
getName(self)

Accessor to the object’s name.

Returns
namestr

The name of the object.

getOperator(self)

Accessor to the comparaison operator of the Event.

Returns
operatorComparisonOperator

Comparaison operator used to define the RandomVector.

getParameter(self)

Accessor to the parameter of the distribution.

Returns
parameterPoint

Parameter values.

getParameterDescription(self)

Accessor to the parameter description of the distribution.

Returns
descriptionDescription

Parameter names.

getProcess(self)

Get the stochastic process.

Returns
processProcess

Stochastic process used to define the RandomVector.

getRealization(self)

Compute one realization of the RandomVector.

Returns
aRealizationPoint

Sequence of values randomly determined from the RandomVector definition. In the case of an event: one realization of the event (considered as a Bernoulli variable) which is a boolean value (1 for the realization of the event and 0 else).

See also

getSample

Examples

>>> import openturns as ot
>>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2))
>>> randomVector = ot.RandomVector(distribution)
>>> ot.RandomGenerator.SetSeed(0)
>>> print(randomVector.getRealization())
[0.608202,-1.26617]
>>> print(randomVector.getRealization())
[-0.438266,1.20548]
getSample(self, size)

Compute realizations of the RandomVector.

Parameters
nint, n \geq 0

Number of realizations needed.

Returns
realizationsSample

n sequences of values randomly determined from the RandomVector definition. In the case of an event: n realizations of the event (considered as a Bernoulli variable) which are boolean values (1 for the realization of the event and 0 else).

See also

getRealization

Examples

>>> import openturns as ot
>>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2))
>>> randomVector = ot.RandomVector(distribution)
>>> ot.RandomGenerator.SetSeed(0)
>>> print(randomVector.getSample(3))
    [ X0        X1        ]
0 : [  0.608202 -1.26617  ]
1 : [ -0.438266  1.20548  ]
2 : [ -2.18139   0.350042 ]
getShadowedId(self)

Accessor to the object’s shadowed id.

Returns
idint

Internal unique identifier.

getThreshold(self)

Accessor to the threshold of the Event.

Returns
thresholdfloat

Threshold of the RandomVector.

getVisibility(self)

Accessor to the object’s visibility state.

Returns
visiblebool

Visibility flag.

hasName(self)

Test if the object is named.

Returns
hasNamebool

True if the name is not empty.

hasVisibleName(self)

Test if the object has a distinguishable name.

Returns
hasVisibleNamebool

True if the name is not empty and not the default one.

isComposite(self)

Accessor to know if the RandomVector is a composite one.

Returns
isCompositebool

Indicates if the RandomVector is of type Composite or not.

isEvent(self)

Whether the random vector is an event.

Returns
isEventbool

Whether it takes it values in {0, 1}.

setDescription(self, description)

Accessor to the description of the RandomVector.

Parameters
descriptionstr or sequence of str

Describes the components of the RandomVector.

setEventCollection(self, collection)

Accessor to sub events.

Parameters
eventssequence of RandomVector

List of sub events.

setName(self, name)

Accessor to the object’s name.

Parameters
namestr

The name of the object.

setParameter(self, parameters)

Accessor to the parameter of the distribution.

Parameters
parametersequence of float

Parameter values.

setShadowedId(self, id)

Accessor to the object’s shadowed id.

Parameters
idint

Internal unique identifier.

setVisibility(self, visible)

Accessor to the object’s visibility state.

Parameters
visiblebool

Visibility flag.