RegularGrid¶
- 
class RegularGrid(*args)¶
- Regular Grid. - Available constructors:
- RegularGrid(start, step, n) - RegularGrid(mesh) 
 - Parameters
- startfloat
- The start time stamp of the grid. 
- stepfloat, positive
- The step between to consecutive time stamps. 
- nint
- The number of time stamps in the grid, including the start and the end time stamps. 
- meshMesh
- The mesh must be in - , regular and sorted in the increasing order. 
 
 - See also - Notes - The time stamps of the regular grid are: - where - for - and - the step. - Examples - >>> import openturns as ot >>> myRegularGrid = ot.RegularGrid(0.0, 0.1, 100) - Methods - ImportFromMSHFile(fileName)- Import mesh from FreeFem 2-d mesh files. - checkPointInSimplexWithCoordinates(self, …)- Check if a point is inside a simplex and returns its barycentric coordinates. - computeP1Gram(self)- Compute the P1 Lagrange finite element gram matrix of the mesh. - computeSimplicesVolume(self)- Compute the volume of all simplices. - computeWeights(self)- Compute an approximation of an integral defined over the mesh. - draw(self)- Draw the mesh. - draw1D(self)- Draw the mesh of dimension 1. - draw2D(self)- Draw the mesh of dimension 2. - draw3D(self, \*args)- Draw the bidimensional projection of the mesh. - exportToVTKFile(self, \*args)- Export the mesh to a VTK file. - fixOrientation(self)- Make all the simplices positively oriented. - follows(self, starter)- Check if the given grid follows the current one. - getClassName(self)- Accessor to the object’s name. - getDescription(self)- Get the description of the vertices. - getDimension(self)- Dimension accessor. - getEnd(self)- Accessor to the first time stamp after the last time stamp of the grid. - getId(self)- Accessor to the object’s id. - getN(self)- Accessor to the number of time stamps in the grid. - getName(self)- Accessor to the object’s name. - getShadowedId(self)- Accessor to the object’s shadowed id. - getSimplex(self, index)- Get the simplex of a given index. - getSimplices(self)- Get the simplices of the mesh. - getSimplicesNumber(self)- Get the number of simplices of the mesh. - getStart(self)- Accessor to the start time stamp. - getStep(self)- Accessor to the step. - getValue(self, i)- Accessor to the time stamps at a gien index. - getValues(self)- Accessor to all the time stamps. - getVertex(self, index)- Get the vertex of a given index. - getVertices(self)- Get the vertices of the mesh. - getVerticesNumber(self)- Get the number of vertices of the mesh. - getVisibility(self)- Accessor to the object’s visibility state. - getVolume(self)- Get the volume of the mesh. - hasName(self)- Test if the object is named. - hasVisibleName(self)- Test if the object has a distinguishable name. - isEmpty(self)- Check whether the mesh is empty. - isNumericallyEmpty(self)- Check if the mesh is numerically empty. - isRegular(self)- Check if the mesh is regular (only for 1-d meshes). - isValid(self)- Check the mesh validity. - setName(self, name)- Accessor to the object’s name. - setShadowedId(self, id)- Accessor to the object’s shadowed id. - setSimplices(self, simplices)- Set the simplices of the mesh. - setVertex(self, index, vertex)- Set a vertex of a given index. - setVertices(self, vertices)- Set the vertices of the mesh. - setVisibility(self, visible)- Accessor to the object’s visibility state. - streamToVTKFormat(self, \*args)- Give a VTK representation of the mesh. - getLowerBound - getUpperBound - 
__init__(self, \*args)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
static ImportFromMSHFile(fileName)¶
- Import mesh from FreeFem 2-d mesh files. - Parameters
- MSHFilestr
- A MSH ASCII file. 
 
- Returns
- meshMesh
- Mesh defined in the file MSHFile. 
 
- mesh
 
 - 
checkPointInSimplexWithCoordinates(self, point, index)¶
- Check if a point is inside a simplex and returns its barycentric coordinates. - Parameters
- pointsequence of float
- Point of dimension - , the dimension of the vertices of the mesh. 
- indexint
- Integer characterizes one simplex of the mesh. 
 
- Returns
- isInsidebool
- Flag telling whether point is inside the simplex of index index. 
- coordinatesPoint
- The barycentric coordinates of the given point wrt the vertices of the simplex. 
 
 - Notes - The tolerance for the check on the barycentric coordinates can be tweaked using the key Mesh-CoordinateEpsilon. - Examples - >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplex = [[0, 1, 2]] >>> mesh2d = ot.Mesh(vertices, simplex) >>> # Create a point A inside the simplex >>> pointA = [0.6, 0.3] >>> print(mesh2d.checkPointInSimplexWithCoordinates(pointA, 0)) [True, class=Point name=Unnamed dimension=3 values=[0.4,0.3,0.3]] >>> # Create a point B outside the simplex >>> pointB = [1.1, 0.6] >>> print(mesh2d.checkPointInSimplexWithCoordinates(pointB, 0)) [False, class=Point name=Unnamed dimension=3 values=[-0.1,0.5,0.6]] 
 - 
computeP1Gram(self)¶
- Compute the P1 Lagrange finite element gram matrix of the mesh. - Returns
- gramCovarianceMatrix
- P1 Lagrange finite element gram matrix of the mesh. 
 
- gram
 - Notes - The P1 Lagrange finite element space associated to a mesh with vertices - is the space of piecewise-linear functions generated by the functions - , where - , - for - and the restriction of - to any simplex is an affine function. The vertices that are not included into at least one simplex are not taken into account. - The gram matrix of the mesh is defined as the symmetric positive definite matrix - whose generic element - is given by: - This method is used in several algorithms related to stochastic process representation such as the Karhunen-Loeve decomposition. - Examples - >>> import openturns as ot >>> # Define the vertices of the mesh >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]] >>> # Define the simplices of the mesh >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> # Create the mesh of dimension 2 >>> mesh2d = ot.Mesh(vertices, simplices) >>> print(mesh2d.computeP1Gram()) [[ 0.0416667 0.0208333 0.0208333 0 ] [ 0.0208333 0.0625 0.03125 0.0104167 ] [ 0.0208333 0.03125 0.0625 0.0104167 ] [ 0 0.0104167 0.0104167 0.0208333 ]] 
 - 
computeSimplicesVolume(self)¶
- Compute the volume of all simplices. - Returns
- volumePoint
- Volume of all simplices. 
 
- volume
 - Examples - >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplex = [[0, 1, 2]] >>> mesh2d = ot.Mesh(vertices, simplex) >>> print(mesh2d.computeSimplicesVolume()) [0.5] 
 - 
computeWeights(self)¶
- Compute an approximation of an integral defined over the mesh. - Returns
- weightsPoint
- Weights such that an integral of a function over the mesh is a weighted sum of its values at the vertices. 
 
- weights
 
 - 
draw(self)¶
- Draw the mesh. - Returns
- graphGraph
- If the dimension of the mesh is 1, it draws the corresponding interval, using the - draw1D()method; if the dimension is 2, it draws the triangular simplices, using the- draw2D()method; if the dimension is 3, it projects the simplices on the plane of the two first components, using the- draw3D()method with its default parameters, superposing the simplices.
 
- graph
 
 - 
draw1D(self)¶
- Draw the mesh of dimension 1. - Returns
- graphGraph
- Draws the line linking the vertices of the mesh when the mesh is of dimension 1. 
 
- graph
 - Examples - >>> import openturns as ot >>> from openturns.viewer import View >>> vertices = [[0.5], [1.5], [2.1], [2.7]] >>> simplices = [[0, 1], [1, 2], [2, 3]] >>> mesh1d = ot.Mesh(vertices, simplices) >>> # Create a graph >>> aGraph = mesh1d.draw1D() >>> # Draw the mesh >>> View(aGraph).show() 
 - 
draw2D(self)¶
- Draw the mesh of dimension 2. - Returns
- graphGraph
- Draws the edges of each simplex, when the mesh is of dimension 2. 
 
- graph
 - Examples - >>> import openturns as ot >>> from openturns.viewer import View >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]] >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> mesh2d = ot.Mesh(vertices, simplices) >>> # Create a graph >>> aGraph = mesh2d.draw2D() >>> # Draw the mesh >>> View(aGraph).show() 
 - 
draw3D(self, \*args)¶
- Draw the bidimensional projection of the mesh. - Available usages:
- draw3D(drawEdge=True, thetaX=0.0, thetaY=0.0, thetaZ=0.0, shading=False, rho=1.0) - draw3D(drawEdge, rotation, shading, rho) 
 - Parameters
- drawEdgebool
- Tells if the edge of each simplex has to be drawn. 
- thetaXfloat
- Gives the value of the rotation along the X axis in radian. 
- thetaYfloat
- Gives the value of the rotation along the Y axis in radian. 
- thetaZfloat
- Gives the value of the rotation along the Z axis in radian. 
- rotationSquareMatrix
- Operates a rotation on the mesh before its projection of the plane of the two first components. 
- shadingbool
- Enables to give a visual perception of depth and orientation. 
- rhofloat, 
- Contraction factor of the simplices. If - , all the simplices are contracted and appear deconnected: some holes are created, which enables to see inside the mesh. If - , the simplices keep their initial size and appear connected. If - , each simplex is reduced to its gravity center. 
 
- Returns
- graphGraph
- Draws the bidimensional projection of the mesh on the - plane. 
 
- graph
 - Examples - >>> import openturns as ot >>> from openturns.viewer import View >>> from math import cos, sin, pi >>> vertices = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0], ... [0.0, 1.0, 1.0], [1.0, 0.0, 0.0], [1.0, 0.0, 1.0], ... [1.0, 1.0, 0.0], [1.0, 1.0, 1.0]] >>> simplices = [[0, 1, 2, 4], [3, 5, 6, 7],[1, 2, 3, 6], ... [1, 2, 4, 6], [1, 3, 5, 6], [1, 4, 5, 6]] >>> mesh3d = ot.Mesh(vertices, simplices) >>> # Create a graph >>> aGraph = mesh3d.draw3D() >>> # Draw the mesh >>> View(aGraph).show() >>> rotation = ot.SquareMatrix(3) >>> rotation[0, 0] = cos(pi / 3.0) >>> rotation[0, 1] = sin(pi / 3.0) >>> rotation[1, 0] = -sin(pi / 3.0) >>> rotation[1, 1] = cos(pi / 3.0) >>> rotation[2, 2] = 1.0 >>> # Create a graph >>> aGraph = mesh3d.draw3D(True, rotation, True, 1.0) >>> # Draw the mesh >>> View(aGraph).show() 
 - 
exportToVTKFile(self, \*args)¶
- Export the mesh to a VTK file. - Parameters
- myVTKFile.vtkstr
- Name of the created file which contains the mesh and the associated random values that can be visualized with the open source software Paraview. 
 
 
 - 
fixOrientation(self)¶
- Make all the simplices positively oriented. - Examples - >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplex = [[0, 2, 1]] >>> mesh2d = ot.Mesh(vertices, simplex) >>> print(mesh2d) class=Mesh name=Unnamed dimension=2 vertices=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[0,0],[1,0],[1,1]] simplices=[[0,2,1]] >>> mesh2d.fixOrientation() >>> print(mesh2d) class=Mesh name=Unnamed dimension=2 vertices=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[0,0],[1,0],[1,1]] simplices=[[2,0,1]] 
 - 
follows(self, starter)¶
- Check if the given grid follows the current one. - Parameters
- newGridRegularGrid
- A new regular grid. 
 
- newGrid
- Returns
- answerboolean
- The answer is True if the newGrid directly follows the current one. 
 
 
 - 
getClassName(self)¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - 
getDescription(self)¶
- Get the description of the vertices. - Returns
- descriptionstr
- Description of the vertices. 
 
 - Examples - >>> import openturns as ot >>> mesh = ot.Mesh() >>> vertices = ot.Sample([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]) >>> vertices.setDescription(['X', 'Y']) >>> mesh.setVertices(vertices) >>> print(mesh.getDescription()) [X,Y] 
 - 
getDimension(self)¶
- Dimension accessor. - Returns
- dimensionint
- Dimension of the vertices. 
 
 
 - 
getEnd(self)¶
- Accessor to the first time stamp after the last time stamp of the grid. - Returns
- endPointfloat
- The first point that follows the last point of the grid: - . The end point is not in the grid. 
 
 
 - 
getId(self)¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getN(self)¶
- Accessor to the number of time stamps in the grid. - Returns
- nint
- The number - of time stamps in the grid. 
 
 
 - 
getName(self)¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - 
getShadowedId(self)¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getSimplex(self, index)¶
- Get the simplex of a given index. - Parameters
- indexint
- Index characterizing one simplex of the mesh. 
 
- Returns
- indicesIndices
- Indices defining the simplex of index index. The simplex - relies the vertices of index - in - . In dimension 1, a simplex is an interval - ; in dimension 2, it is a triangle - . 
 
- indices
 - Examples - >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]] >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> mesh2d = ot.Mesh(vertices, simplices) >>> print(mesh2d.getSimplex(0)) [0,1,2] >>> print(mesh2d.getSimplex(1)) [1,2,3] 
 - 
getSimplices(self)¶
- Get the simplices of the mesh. - Returns
- indicesCollectioncollection of Indices
- List of indices defining all the simplices. The simplex - relies the vertices of index - in - . In dimension 1, a simplex is an interval - ; in dimension 2, it is a triangle - . 
 
- indicesCollectioncollection of 
 - Examples - >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]] >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> mesh2d = ot.Mesh(vertices, simplices) >>> print(mesh2d.getSimplices()) [[0,1,2],[1,2,3]] 
 - 
getSimplicesNumber(self)¶
- Get the number of simplices of the mesh. - Returns
- numberint
- Number of simplices of the mesh. 
 
 
 - 
getStart(self)¶
- Accessor to the start time stamp. - Returns
- startfloat
- The start point - of the grid. 
 
 
 - 
getStep(self)¶
- Accessor to the step. - Returns
- stepfloat
- The step - between two consecutive time stamps. 
 
 
 - 
getValue(self, i)¶
- Accessor to the time stamps at a gien index. - Parameters
- kint, . 
- Index of a time stamp. 
 
- kint, 
- Returns
- valuefloat
- The time stamp - . 
 
 
 - 
getValues(self)¶
- Accessor to all the time stamps. - Returns
- valuesPoint
- The collection of the time stamps. 
 
- values
 
 - 
getVertex(self, index)¶
- Get the vertex of a given index. - Parameters
- indexint
- Index characterizing one vertex of the mesh. 
 
- Returns
- vertexPoint
- Coordinates in - of the vertex of index index, where - is the dimension of the vertices of the mesh. 
 
- vertex
 - Examples - >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplices = [[0, 1, 2]] >>> mesh2d = ot.Mesh(vertices, simplices) >>> print(mesh2d.getVertex(1)) [1,0] >>> print(mesh2d.getVertex(0)) [0,0] 
 - 
getVertices(self)¶
- Get the vertices of the mesh. - Returns
- verticesSample
- Coordinates in - of the vertices, where - is the dimension of the vertices of the mesh. 
 
- vertices
 - Examples - >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplices = [[0, 1, 2]] >>> mesh2d = ot.Mesh(vertices, simplices) >>> print(mesh2d.getVertices()) 0 : [ 0 0 ] 1 : [ 1 0 ] 2 : [ 1 1 ] 
 - 
getVerticesNumber(self)¶
- Get the number of vertices of the mesh. - Returns
- numberint
- Number of vertices of the mesh. 
 
 
 - 
getVisibility(self)¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - 
getVolume(self)¶
- Get the volume of the mesh. - Returns
- volumefloat
- Geometrical volume of the mesh which is the sum of its simplices’ volumes. 
 
 - Examples - >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]] >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> mesh2d = ot.Mesh(vertices, simplices) >>> mesh2d.getVolume() 0.75 
 - 
hasName(self)¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - 
hasVisibleName(self)¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - 
isEmpty(self)¶
- Check whether the mesh is empty. - Returns
- emptybool
- Tells if the mesh is empty, ie if its volume is null. 
 
 
 - 
isNumericallyEmpty(self)¶
- Check if the mesh is numerically empty. - Returns
- isEmptybool
- Flag telling whether the mesh is numerically empty, i.e. if its numerical volume is inferior or equal to - (defined in the - ResourceMap:- = Domain-SmallVolume). 
 
 - Examples - >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplex = [[0, 1, 2]] >>> mesh2d = ot.Mesh(vertices, simplex) >>> print(mesh2d.isNumericallyEmpty()) False 
 - 
isRegular(self)¶
- Check if the mesh is regular (only for 1-d meshes). - Returns
- isRegularbool
- Tells if the mesh is regular or not. 
 
 - Examples - >>> import openturns as ot >>> vertices = [[0.5], [1.5], [2.4], [3.5]] >>> simplices = [[0, 1], [1, 2], [2, 3]] >>> mesh1d = ot.Mesh(vertices, simplices) >>> print(mesh1d.isRegular()) False >>> vertices = [[0.5], [1.5], [2.5], [3.5]] >>> mesh1d = ot.Mesh(vertices, simplices) >>> print(mesh1d.isRegular()) True 
 - 
isValid(self)¶
- Check the mesh validity. - Returns
- validitybool
- Tells if the mesh is valid i.e. if there is non-overlaping simplices, no unused vertex, no simplices with duplicate vertices and no coincident vertices. 
 
 
 - 
setName(self, name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - 
setShadowedId(self, id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - 
setSimplices(self, simplices)¶
- Set the simplices of the mesh. - Parameters
- indices2-d sequence of int
- List of indices defining all the simplices. The simplex - relies the vertices of index - in - . In dimension 1, a simplex is an interval - ; in dimension 2, it is a triangle - . 
 
 - Examples - >>> import openturns as ot >>> mesh = ot.Mesh() >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> mesh.setSimplices(simplices) 
 - 
setVertex(self, index, vertex)¶
- Set a vertex of a given index. - Parameters
- indexint
- Index of the vertex to set. 
- vertexsequence of float
- Cordinates in - of the vertex of index index, where - is the dimension of the vertices of the mesh. 
 
 - Examples - >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplices = [[0, 1, 2]] >>> mesh = ot.Mesh(vertices, simplices) >>> vertex = [0.0, 0.5] >>> mesh.setVertex(0, vertex) >>> print(mesh.getVertices()) 0 : [ 0 0.5 ] 1 : [ 1 0 ] 2 : [ 1 1 ] 
 - 
setVertices(self, vertices)¶
- Set the vertices of the mesh. - Parameters
- vertices2-d sequence of float
- Cordinates in - of the vertices, where - is the dimension of the vertices of the mesh. 
 
 - Examples - >>> import openturns as ot >>> mesh = ot.Mesh() >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> mesh.setVertices(vertices) 
 - 
setVisibility(self, visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 - 
streamToVTKFormat(self, \*args)¶
- Give a VTK representation of the mesh. - Returns
- streamstr
- VTK representation of the mesh. 
 
 
 
 OpenTURNS
      OpenTURNS