LinearModelStepwiseAlgorithm¶
-
class
LinearModelStepwiseAlgorithm
(*args)¶ Stepwise linear model algorithm.
Available usages:
LinearModelStepwiseAlgorithm(inputSample, basis, outputSample, minimalIndices, isForward, penalty, maximumIterationNumber)
LinearModelStepwiseAlgorithm(inputSample, basis, outputSample, minimalIndices, startIndices, penalty, maximumIterationNumber)
- Parameters
- inputSample, outputSample2-d sequence of float
The input and output samples of a model.
- basis
Basis
Functional basis to estimate the trend.
- minimalIndicessequence of int
The indices of minimal model
- isForwardbool
the boolean value used for the stepwise regression method direction FORWARD and BACKWARD.
- startIndicessequence of int
The indices of start model used for the stepwise regression method direction BOTH.
- penaltyfloat
The multiple of the degrees of freedom used for the penalty of the stepwise regression method:
2 Akaike information criterion (AIC)
log(n) Bayesian information criterion (BIC)
- maximumIterationNumberint
The maximum number of iterations of the stepwise regression method.
See also
Notes
The objective is to select the best linear regression model by using the stepwise method. Starting from the basis and minimalIndices, the stepwise strategy consists in adding basis elements (if isForward is True), dropping some (if isForward is False) or adding and dropping (both strategy) some elements. At each step, we get a model. We compute the corresponding penalty (BIC or AIC) and we continue repeatedly this process until the penalty could not be improved or the maximum iterations number is reached. Finally we get a regression model between the scalar variable and the -dimensional one writes as follows:
where is the residual, supposed to follow the standard Normal distribution, the i-th element of the basis.
Methods
getClassName
(self)Accessor to the object’s name.
getDirection
(self)Accessor to the direction.
getFormula
(self)Accessor to the formula.
getId
(self)Accessor to the object’s id.
getInputSample
(self)Accessor to the input sample.
Accessor to the maximum iteration number.
getName
(self)Accessor to the object’s name.
getOutputSample
(self)Accessor to the output sample.
getPenalty
(self)Accessor to the penalty.
getResult
(self)Accessor to the result.
getShadowedId
(self)Accessor to the object’s shadowed id.
getVisibility
(self)Accessor to the object’s visibility state.
hasName
(self)Test if the object is named.
hasVisibleName
(self)Test if the object has a distinguishable name.
run
(self)Run the algorithm.
setName
(self, name)Accessor to the object’s name.
setShadowedId
(self, id)Accessor to the object’s shadowed id.
setVisibility
(self, visible)Accessor to the object’s visibility state.
-
__init__
(self, \*args)¶ Initialize self. See help(type(self)) for accurate signature.
-
getClassName
(self)¶ Accessor to the object’s name.
- Returns
- class_namestr
The object class name (object.__class__.__name__).
-
getDirection
(self)¶ Accessor to the direction.
- Returns
- directionint
Direction.
-
getFormula
(self)¶ Accessor to the formula.
- Returns
- formulastr
Formula.
-
getId
(self)¶ Accessor to the object’s id.
- Returns
- idint
Internal unique identifier.
-
getMaximumIterationNumber
(self)¶ Accessor to the maximum iteration number.
- Returns
- maximum_iterationint
Maximum number of iterations.
-
getName
(self)¶ Accessor to the object’s name.
- Returns
- namestr
The name of the object.
-
getPenalty
(self)¶ Accessor to the penalty.
- Returns
- penaltyfloat
Penalty.
-
getResult
(self)¶ Accessor to the result.
- Returns
- result
LinearModelResult
The result.
- result
-
getShadowedId
(self)¶ Accessor to the object’s shadowed id.
- Returns
- idint
Internal unique identifier.
-
getVisibility
(self)¶ Accessor to the object’s visibility state.
- Returns
- visiblebool
Visibility flag.
-
hasName
(self)¶ Test if the object is named.
- Returns
- hasNamebool
True if the name is not empty.
-
hasVisibleName
(self)¶ Test if the object has a distinguishable name.
- Returns
- hasVisibleNamebool
True if the name is not empty and not the default one.
-
run
(self)¶ Run the algorithm.
-
setName
(self, name)¶ Accessor to the object’s name.
- Parameters
- namestr
The name of the object.
-
setShadowedId
(self, id)¶ Accessor to the object’s shadowed id.
- Parameters
- idint
Internal unique identifier.
-
setVisibility
(self, visible)¶ Accessor to the object’s visibility state.
- Parameters
- visiblebool
Visibility flag.