Note
Click here to download the full example code
Test normality using Anderson-DarlingΒΆ
In this example we are going to evaluate whether a sample follows a normal distribution.
from __future__ import print_function
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)
Generate a sample
sample = ot.Normal().getSample(200)
Test normality
test_result = ot.NormalityTest.AndersonDarlingNormal(sample)
print('Component is normal?', test_result.getBinaryQualityMeasure(),
'p-value=%.6g' % test_result.getPValue(),
'threshold=%.6g' % test_result.getThreshold())
Out:
Component is normal? True p-value=0.382536 threshold=0.05
Test succeeded ?
test_result.getBinaryQualityMeasure()
Out:
True
P-Value
test_result.getPValue()
Out:
0.38253643373582846
Total running time of the script: ( 0 minutes 0.002 seconds)