FittingTest_BestModelKolmogorov¶
- FittingTest_BestModelKolmogorov(sample, distributionCollection)¶
- Select the best model according to the Kolmogorov goodness-of-fit test. - Parameters
- sample2-d sequence of float
- Tested sample. 
- modelslist of Distribution
- Tested distributions. 
 
- Returns
- best_modelDistribution
- The distribution that fits the sample best according to the test. This may raise a warning if the best model does not perform well. 
- best_resultTestResult
- Best test result. 
 
- best_model
 - See also - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Normal() >>> sample = distribution.getSample(30) >>> tested_distributions = [ot.Exponential(), ot.Normal()] >>> best_model, best_result = ot.FittingTest.BestModelKolmogorov(sample, tested_distributions) >>> print(best_model) Normal(mu = 0, sigma = 1) 
 OpenTURNS
      OpenTURNS