Note
Click here to download the full example code
Estimate a multivariate distribution¶
In this example we are going to estimate a joint distribution from a multivariate sample by fitting marginals and finding a set of copulas.
While the estimation of marginals is quite straightforward, the estimation of the dependency structure takes several steps:
find the dependent components
estimate a copula on each dependent bloc
assemble the estimated copulas
import openturns as ot
import math as m
ot.Log.Show(ot.Log.NONE)
ot.RandomGenerator.SetSeed(0)
generate some multivariate data to estimate, with correlation
cop1 = ot.AliMikhailHaqCopula(0.6)
cop2 = ot.ClaytonCopula(2.5)
copula = ot.ComposedCopula([cop1, cop2])
marginals = [ot.Uniform(5.0, 6.0), ot.Arcsine(
), ot.Normal(-40.0, 3.0), ot.Triangular(100.0, 150.0, 300.0)]
distribution = ot.ComposedDistribution(marginals, copula)
sample = distribution.getSample(10000).getMarginal([0, 2, 3, 1])
estimate marginals
dimension = sample.getDimension()
marginalFactories = []
for factory in ot.DistributionFactory.GetContinuousUniVariateFactories():
if str(factory).startswith('Histogram'):
# ~ non-parametric
continue
marginalFactories.append(factory)
estimated_marginals = [ot.FittingTest.BestModelBIC(
sample.getMarginal(i), marginalFactories)[0] for i in range(dimension)]
estimated_marginals
Out:
[class=Uniform name=Uniform dimension=1 a=5.00008 b=6, class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[-39.9843] sigma=class=Point name=Unnamed dimension=1 values=[3.05427] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1], class=Triangular name=Triangular dimension=1 a=100.476 m=150.62 b=298.489, class=Beta name=Beta dimension=1 alpha=0.500965 beta=0.499485 a=-1.0002 b=1.0002]
Find connected components of a graph defined from its adjacency matrix
def find_neighbours(head, covariance, to_visit, visited):
N = covariance.getDimension()
visited[head] = 1
to_visit.remove(head)
current_component = [head]
for i in to_visit:
# If i is connected to head and has not yet been visited
if covariance[head, i] > 0:
# Add i to the current component
component = find_neighbours(i, covariance, to_visit, visited)
current_component += component
return current_component
def connected_components(covariance):
N = covariance.getDimension()
to_visit = list(range(N))
visited = [0] * N
all_components = []
for head in range(N):
if visited[head] == 0:
component = find_neighbours(head, covariance, to_visit, visited)
all_components.append(sorted(component))
return all_components
Estimate the copula¶
First find the dependent components : we compute the Spearman correlation
C = sample.computeSpearmanCorrelation()
print(C)
Out:
[[ 1 -0.00167386 0.00312294 0.245006 ]
[ -0.00167386 1 0.739083 -0.0138198 ]
[ 0.00312294 0.739083 1 -0.00164887 ]
[ 0.245006 -0.0138198 -0.00164887 1 ]]
We filter and consider only significantly non-zero correlations.
epsilon = 1.0 / m.sqrt(sample.getSize())
for j in range(dimension):
for i in range(j):
C[i, j] = 1.0 if abs(C[i, j]) > epsilon else 0.0
print(C)
Out:
[[ 1 0 0 1 ]
[ 0 1 1 1 ]
[ 0 1 1 0 ]
[ 1 1 0 1 ]]
Note that we can apply the HypothesisTest.Spearman test. As the null hypothesis of the test is the independence, we must take the complementary of the binary measure as follow:
>>> M = ot.SymmetricMatrix(dimension)
>>> for i in range(dimension):
>>> M[i,i] = 1
>>> for j in range(i):
>>> M[i, j] = 1 - ot.HypothesisTest.Spearman(sample[:,i], sample[:,j]).getBinaryQualityMeasure()
Now we find the independent blocs:
blocs = connected_components(C)
blocs
Out:
[[0, 1, 2, 3]]
For each dependent block, we estimate the most accurate non parameteric copula.
To do this, we first need to transform the sample in such a way as to keep the copula intact but make all marginal samples follow the uniform distribution on [0,1].
copula_sample = ot.Sample(sample.getSize(), sample.getDimension())
copula_sample.setDescription(sample.getDescription())
for index in range(sample.getDimension()):
copula_sample[:, index] = estimated_marginals[index].computeCDF(
sample[:, index])
copulaFactories = []
for factory in ot.DistributionFactory.GetContinuousMultiVariateFactories():
if not factory.build().isCopula():
continue
if factory.getImplementation().getClassName() == 'BernsteinCopulaFactory':
continue
copulaFactories.append(factory)
estimated_copulas = [ot.FittingTest.BestModelBIC(
copula_sample.getMarginal(bloc), copulaFactories)[0] for bloc in blocs]
estimated_copulas
Out:
[class=NormalCopula name=NormalCopula dimension=4 correlation=class=CorrelationMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,-0.00175419,0.00319255,0.255566,-0.00175419,1,0.763961,-0.0144276,0.00319255,0.763961,1,-0.00171806,0.255566,-0.0144276,-0.00171806,1]]
Finally we assemble the copula
estimated_copula_perm = ot.ComposedCopula(estimated_copulas)
Take care of the order of each bloc vs the order of original components !
permutation = []
for bloc in blocs:
permutation.extend(bloc)
inverse_permutation = [-1] * dimension
for i in range(dimension):
inverse_permutation[permutation[i]] = i
estimated_copula = estimated_copula_perm.getMarginal(inverse_permutation)
estimated_copula
We build joint distribution from marginal distributions and dependency structure:
estimated_distribution = ot.ComposedDistribution(
estimated_marginals, estimated_copula)
estimated_distribution
Total running time of the script: ( 0 minutes 4.028 seconds)