BestModelAICC¶
- BestModelAICC(*args)¶
Select the best model according to the Akaike information criterion with correction.
- Parameters
- sample2-d sequence of float
Tested sample.
- modelslist of
Distribution
orDistributionFactory
Tested distributions.
- Returns
- best_model
Distribution
The best distribution for the sample according to Bayesian information criterion. This may raise a warning if the best model does not perform well.
- best_aiccfloat
The Akaike information criterion (corrected) with the best model.
- best_model
See also
FittingTest.AICC
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Normal() >>> sample = distribution.getSample(30) >>> tested_distributions = [ot.ExponentialFactory(), ot.NormalFactory()] >>> best_model, best_aicc = ot.FittingTest.BestModelAICC(sample, tested_distributions) >>> print(best_model) Normal(mu = -0.0944924, sigma = 0.989808)