OrthogonalUniVariatePolynomial¶
- class OrthogonalUniVariatePolynomial(*args)¶
- Base class for orthogonal univariate polynomials. - Warning - Orthogonal univariate polynomials are not intended to be created manually. They should be constructed with the subclasses of - OrthogonalUniVariatePolynomialFamily(like e.g.- HermiteFactory). Constructor parameters are therefore intentionally not documented.- See also - Examples - >>> import openturns as ot - Create a univariate polynomial from a list of coefficients: - >>> for i in range(3): ... print(ot.OrthogonalUniVariatePolynomialFamily().build(i)) 1 X -0.707107 + 0.707107 * X^2 - Methods - __call__(x)- Call self as a function. - derivate()- Build the first-order derivative polynomial. - draw(xMin, xMax, pointNumber)- Draw the function. - Accessor to the object's name. - Accessor to the polynomials's coefficients. - Accessor to the polynomials's degree. - getId()- Accessor to the object's id. - getName()- Accessor to the object's name. - Accessor to the recurrence coefficients. - getRoots()- Compute the roots of the polynomial. - Accessor to the object's shadowed id. - Accessor to the object's visibility state. - gradient(x)- Compute the gradient at point - . - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - hessian(x)- Compute the hessian at point - . - incrementDegree([degree])- Multiply the polynomial by - . - setCoefficients(coefficients)- Accessor to the polynomials's coefficients. - setName(name)- Accessor to the object's name. - setShadowedId(id)- Accessor to the object's shadowed id. - setVisibility(visible)- Accessor to the object's visibility state. - __init__(*args)¶
 - derivate()¶
- Build the first-order derivative polynomial. - Returns
- derivated_polynomialUnivariate
- The first-order derivated polynomial. 
 
- derivated_polynomial
 - Examples - >>> import openturns as ot >>> P = ot.UniVariatePolynomial([1.0, 2.0, 3.0]) >>> print(P.derivate()) 2 + 6 * X 
 - draw(xMin, xMax, pointNumber)¶
- Draw the function. - Parameters
- x_minfloat, optional
- The starting value that is used for meshing the x-axis. 
- x_maxfloat, optional, 
- The ending value that is used for meshing the x-axis. 
- n_pointsint, optional
- The number of points that is used for meshing the x-axis. 
 
 - Examples - >>> import openturns as ot >>> from openturns.viewer import View >>> f = ot.UniVariatePolynomial([1.0, 2.0, -3.0, 5.0]) >>> View(f.draw(-10.0, 10.0, 100)).show() 
 - getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getCoefficients()¶
- Accessor to the polynomials’s coefficients. - Returns
- coefficientsPoint
- Polynomial coefficients in increasing polynomial order. 
 
- coefficients
 - See also - Examples - >>> import openturns as ot >>> P = ot.UniVariatePolynomial([1.0, 2.0, 3.0]) >>> print(P.getCoefficients()) [1,2,3] 
 - getDegree()¶
- Accessor to the polynomials’s degree. - Returns
- degreeint
- Polynomial’s degree. 
 
 - Examples - >>> import openturns as ot >>> P = ot.UniVariatePolynomial([1.0, 2.0, 3.0]) >>> print(P.getDegree()) 2 
 - getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - getRecurrenceCoefficients()¶
- Accessor to the recurrence coefficients. - Returns
- recurrence_coefficientslist of Point
- The list of recurrence coefficients that defined the orthogonal univariate polynomial from the very first univariate orthogonal polynomial - . 
 
- recurrence_coefficientslist of 
 - Notes - Any sequence of orthogonal polynomials has a recurrence formula relating any three consecutive polynomials as follows: - Examples - >>> import openturns as ot >>> polynomial = ot.OrthogonalUniVariatePolynomialFamily().build(2) >>> print(polynomial.getRecurrenceCoefficients()) 0 : [ 1 0 0 ] 1 : [ 0.707107 0 -0.707107 ] 
 - getRoots()¶
- Compute the roots of the polynomial. - Returns
- rootslist of complex values
- Polynomial’s roots. 
 
 - Examples - >>> import openturns as ot >>> P = ot.UniVariatePolynomial([1.0, 2.0, 3.0]) >>> print(P.getRoots()) [(-0.333333,0.471405),(-0.333333,-0.471405)] 
 - getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - gradient(x)¶
- Compute the gradient at point - . - Returns
- gradientfloat
- The value of the function’s first-order derivative at point - . 
 
 - Examples - >>> import openturns as ot >>> P = ot.UniVariatePolynomial([1.0, 2.0, 3.0]) >>> print(P.gradient(1.0)) 8.0 
 - hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - hessian(x)¶
- Compute the hessian at point - . - Parameters
- xfloat
- Input value. 
 
- Returns
- hessianfloat
- The value of the function’s second-order derivative at point - . 
 
 
 - incrementDegree(degree=1)¶
- Multiply the polynomial by - . - Parameters
- degreeint, optional
- The incremented degree - . Default uses - . 
 
- Returns
- incremented_degree_polynomialUniVariatePolynomial
- Polynomial with incremented degree. 
 
- incremented_degree_polynomial
 - Examples - >>> import openturns as ot >>> P = ot.UniVariatePolynomial([1.0, 2.0, 3.0]) >>> print(P.incrementDegree()) X + 2 * X^2 + 3 * X^3 >>> print(P.incrementDegree(2)) X^2 + 2 * X^3 + 3 * X^4 
 - setCoefficients(coefficients)¶
- Accessor to the polynomials’s coefficients. - Parameters
- coefficientssequence of float
- Polynomial coefficients in increasing polynomial order. 
 
 - See also - Examples - >>> import openturns as ot >>> P = ot.UniVariatePolynomial([1.0, 2.0, 3.0]) >>> P.setCoefficients([4.0, 2.0, 1.0]) >>> print(P) 4 + 2 * X + X^2 
 - setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS