CompositeRandomVector¶
(Source code, png, hires.png, pdf)
- class CompositeRandomVector(*args)¶
Random Vector obtained by applying a function.
Allows one to define the random variable from a function and another random variable .
- Parameters:
- f
Function
Function to apply to the antecedent.
- X
RandomVector
Random vector of the antecedent.
- f
Examples
>>> import openturns as ot >>> X = ot.RandomVector(ot.Normal()) >>> f = ot.SymbolicFunction(['x'], ['x^2*sin(x)']) >>> Y = ot.CompositeRandomVector(f, X)
Draw a sample:
>>> sample = Y.getSample(5)
Methods
Accessor to the antecedent RandomVector in case of a composite RandomVector.
Accessor to the object's name.
Accessor to the covariance of the RandomVector.
Accessor to the description of the RandomVector.
Accessor to the dimension of the RandomVector.
Accessor to the distribution of the RandomVector.
Accessor to the domain of the Event.
Accessor to the Function in case of a composite RandomVector.
getId
()Accessor to the object's id.
getMarginal
(*args)Get the random vector corresponding to the marginal component(s).
getMean
()Accessor to the mean of the RandomVector.
getName
()Accessor to the object's name.
Accessor to the comparaison operator of the Event.
Accessor to the parameter of the distribution.
Accessor to the parameter description of the distribution.
Get the stochastic process.
Compute one realization of the RandomVector.
getSample
(size)Compute realizations of the RandomVector.
Accessor to the object's shadowed id.
Accessor to the threshold of the Event.
Accessor to the object's visibility state.
hasName
()Test if the object is named.
Test if the object has a distinguishable name.
Accessor to know if the RandomVector is a composite one.
isEvent
()Whether the random vector is an event.
setDescription
(description)Accessor to the description of the RandomVector.
setName
(name)Accessor to the object's name.
setParameter
(parameters)Accessor to the parameter of the distribution.
setShadowedId
(id)Accessor to the object's shadowed id.
setVisibility
(visible)Accessor to the object's visibility state.
- __init__(*args)¶
- getAntecedent()¶
Accessor to the antecedent RandomVector in case of a composite RandomVector.
- Returns:
- antecedent
RandomVector
Antecedent RandomVector in case of a
CompositeRandomVector
such as: .
- antecedent
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getCovariance()¶
Accessor to the covariance of the RandomVector.
- Returns:
- covariance
CovarianceMatrix
Covariance of the considered
UsualRandomVector
.
- covariance
Examples
>>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.5], [1.0, 1.5], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getCovariance()) [[ 1 0 ] [ 0 2.25 ]]
- getDescription()¶
Accessor to the description of the RandomVector.
- Returns:
- description
Description
Describes the components of the RandomVector.
- description
- getDimension()¶
Accessor to the dimension of the RandomVector.
- Returns:
- dimensionpositive int
Dimension of the RandomVector.
- getDistribution()¶
Accessor to the distribution of the RandomVector.
- Returns:
- distribution
Distribution
Distribution of the considered
UsualRandomVector
.
- distribution
Examples
>>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getDistribution()) Normal(mu = [0,0], sigma = [1,1], R = [[ 1 0 ] [ 0 1 ]])
- getDomain()¶
Accessor to the domain of the Event.
- Returns:
- domain
Domain
Describes the domain of an event.
- domain
- getFunction()¶
Accessor to the Function in case of a composite RandomVector.
- Returns:
- function
Function
Function used to define a
CompositeRandomVector
as the image through this function of the antecedent : .
- function
- getId()¶
Accessor to the object’s id.
- Returns:
- idint
Internal unique identifier.
- getMarginal(*args)¶
Get the random vector corresponding to the marginal component(s).
- Parameters:
- iint or list of ints,
Indicates the component(s) concerned. is the dimension of the RandomVector.
- Returns:
- vector
RandomVector
RandomVector restricted to the concerned components.
- vector
Notes
Let’s note a random vector and a set of indices. If is a
UsualRandomVector
, the subvector is defined by . If is aCompositeRandomVector
, defined by with , some scalar functions, the subvector is .Examples
>>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getMarginal(1).getRealization()) [0.608202] >>> print(randomVector.getMarginal(1).getDistribution()) Normal(mu = 0, sigma = 1)
- getMean()¶
Accessor to the mean of the RandomVector.
- Returns:
- mean
Point
Mean of the considered
UsualRandomVector
.
- mean
Examples
>>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.5], [1.0, 1.5], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getMean()) [0,0.5]
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getOperator()¶
Accessor to the comparaison operator of the Event.
- Returns:
- operator
ComparisonOperator
Comparaison operator used to define the
RandomVector
.
- operator
- getParameter()¶
Accessor to the parameter of the distribution.
- Returns:
- parameter
Point
Parameter values.
- parameter
- getParameterDescription()¶
Accessor to the parameter description of the distribution.
- Returns:
- description
Description
Parameter names.
- description
- getProcess()¶
Get the stochastic process.
- Returns:
- process
Process
Stochastic process used to define the
RandomVector
.
- process
- getRealization()¶
Compute one realization of the RandomVector.
- Returns:
- aRealization
Point
Sequence of values randomly determined from the RandomVector definition. In the case of an event: one realization of the event (considered as a Bernoulli variable) which is a boolean value (1 for the realization of the event and 0 else).
- aRealization
See also
Examples
>>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getRealization()) [0.608202,-1.26617] >>> print(randomVector.getRealization()) [-0.438266,1.20548]
- getSample(size)¶
Compute realizations of the RandomVector.
- Parameters:
- nint,
Number of realizations needed.
- Returns:
- realizations
Sample
n sequences of values randomly determined from the RandomVector definition. In the case of an event: n realizations of the event (considered as a Bernoulli variable) which are boolean values (1 for the realization of the event and 0 else).
- realizations
See also
Examples
>>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getSample(3)) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ]
- getShadowedId()¶
Accessor to the object’s shadowed id.
- Returns:
- idint
Internal unique identifier.
- getThreshold()¶
Accessor to the threshold of the Event.
- Returns:
- thresholdfloat
Threshold of the
RandomVector
.
- getVisibility()¶
Accessor to the object’s visibility state.
- Returns:
- visiblebool
Visibility flag.
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- hasVisibleName()¶
Test if the object has a distinguishable name.
- Returns:
- hasVisibleNamebool
True if the name is not empty and not the default one.
- isComposite()¶
Accessor to know if the RandomVector is a composite one.
- Returns:
- isCompositebool
Indicates if the RandomVector is of type Composite or not.
- isEvent()¶
Whether the random vector is an event.
- Returns:
- isEventbool
Whether it takes it values in {0, 1}.
- setDescription(description)¶
Accessor to the description of the RandomVector.
- Parameters:
- descriptionstr or sequence of str
Describes the components of the RandomVector.
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
- setParameter(parameters)¶
Accessor to the parameter of the distribution.
- Parameters:
- parametersequence of float
Parameter values.
- setShadowedId(id)¶
Accessor to the object’s shadowed id.
- Parameters:
- idint
Internal unique identifier.
- setVisibility(visible)¶
Accessor to the object’s visibility state.
- Parameters:
- visiblebool
Visibility flag.
Examples using the class¶
Estimate Wilks and empirical quantile
Kriging : propagate uncertainties
Evaluate the mean of a random vector by simulations
Analyse the central tendency of a cantilever beam
Estimate moments from Taylor expansions
Estimate a probability with Latin Hypercube Sampling
Estimate a probability with Monte Carlo
Use a randomized QMC algorithm
Use the Adaptive Directional Stratification Algorithm
Use the post-analytical importance sampling algorithm
Use the Directional Sampling Algorithm
Estimate a flooding probability
Specify a simulation algorithm
Use the Importance Sampling algorithm
Estimate a probability with Monte-Carlo on axial stressed beam: a quick start guide to reliability
Exploitation of simulation algorithm results
Use the FORM algorithm in case of several design points
Non parametric Adaptive Importance Sampling (NAIS)
Use the FORM - SORM algorithms
Test the design point with the Strong Maximum Test
Time variant system reliability problem
Axial stressed beam : comparing different methods to estimate a probability
Create unions or intersections of events
An illustrated example of a FORM probability estimate
Parallel coordinates graph as sensitivity tool
Example of sensitivity analyses on the wing weight model
Defining Python and symbolic functions: a quick start introduction to functions