ConditionalRandomVector¶
(Source code, png)
 
- class ConditionalRandomVector(*args)¶
- Conditional random vector. - Helper class for defining the random vector - such that - follows the distribution - , with - a random vector of dimension the dimension of - . - Available constructors:
- ConditionalRandomVector(conditionedDist, randomParameters) 
 - Parameters:
- conditionedDistDistribution, the distribution of, whose parameters will be overwritten by . 
- randomParametersRandomVector, the random parametersof the conditionedDist distribution. 
 
- conditionedDist
 - Notes - Its probability density function is defined as: - with - the PDF of the distribution of - , where - has been replaced by - , - the PDF of - . - Note that there exist other (quasi) equivalent modellings using a combination of the classes - ConditionalDistributionand- RandomVector(see the Use Cases Guide).- Examples - Create a random vector: - >>> import openturns as ot >>> distXgivenT = ot.Exponential() >>> distGamma = ot.Uniform(1.0, 2.0) >>> distAlpha = ot.Uniform(0.0, 0.1) >>> distTheta = ot.ComposedDistribution([distGamma, distAlpha]) >>> rvTheta = ot.RandomVector(distTheta) >>> rvX = ot.ConditionalRandomVector(distXgivenT, rvTheta) - Draw a sample: - >>> sample = rvX.getSample(5) - Methods - Accessor to the antecedent RandomVector in case of a composite RandomVector. - Accessor to the object's name. - Accessor to the covariance of the RandomVector. - Accessor to the description of the RandomVector. - Accessor to the dimension of the RandomVector. - Accessor to the distribution's conditioned distribution parameter conditionedDistribution. - Accessor to the domain of the Event. - Accessor to the Function in case of a composite RandomVector. - getId()- Accessor to the object's id. - getMarginal(*args)- Get the random vector corresponding to the - marginal component(s). - getMean()- Accessor to the mean of the RandomVector. - getName()- Accessor to the object's name. - Accessor to the comparaison operator of the Event. - Accessor to the parameter of the distribution. - Accessor to the parameter description of the distribution. - Get the stochastic process. - Accessor to the distribution's random parameter randomParameters. - getRealization(*args)- Compute one realization of the RandomVector. - getSample(size)- Compute realizations of the RandomVector. - Accessor to the object's shadowed id. - Accessor to the threshold of the Event. - Accessor to the object's visibility state. - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - Accessor to know if the RandomVector is a composite one. - isEvent()- Whether the random vector is an event. - setDescription(description)- Accessor to the description of the RandomVector. - setName(name)- Accessor to the object's name. - setParameter(parameters)- Accessor to the parameter of the distribution. - setShadowedId(id)- Accessor to the object's shadowed id. - setVisibility(visible)- Accessor to the object's visibility state. - __init__(*args)¶
 - getAntecedent()¶
- Accessor to the antecedent RandomVector in case of a composite RandomVector. - Returns:
- antecedentRandomVector
- Antecedent RandomVector - in case of a - CompositeRandomVectorsuch as:- . 
 
- antecedent
 
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getCovariance()¶
- Accessor to the covariance of the RandomVector. - Returns:
- covarianceCovarianceMatrix
- Covariance of the considered - UsualRandomVector.
 
- covariance
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.5], [1.0, 1.5], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getCovariance()) [[ 1 0 ] [ 0 2.25 ]] 
 - getDescription()¶
- Accessor to the description of the RandomVector. - Returns:
- descriptionDescription
- Describes the components of the RandomVector. 
 
- description
 
 - getDimension()¶
- Accessor to the dimension of the RandomVector. - Returns:
- dimensionpositive int
- Dimension of the RandomVector. 
 
 
 - getDistribution()¶
- Accessor to the distribution’s conditioned distribution parameter conditionedDistribution. - Returns:
- conditionedDistributionDistribution, the distribution of, where the parameters are equal to the values used to generate the last realization of . 
 
- conditionedDistribution
 
 - getDomain()¶
- Accessor to the domain of the Event. - Returns:
- domainDomain
- Describes the domain of an event. 
 
- domain
 
 - getFunction()¶
- Accessor to the Function in case of a composite RandomVector. - Returns:
- functionFunction
- Function used to define a - CompositeRandomVectoras the image through this function of the antecedent- : - . 
 
- function
 
 - getId()¶
- Accessor to the object’s id. - Returns:
- idint
- Internal unique identifier. 
 
 
 - getMarginal(*args)¶
- Get the random vector corresponding to the - marginal component(s). - Parameters:
- iint or list of ints, 
- Indicates the component(s) concerned. - is the dimension of the RandomVector. 
 
- iint or list of ints, 
- Returns:
- vectorRandomVector
- RandomVector restricted to the concerned components. 
 
- vector
 - Notes - Let’s note - a random vector and - a set of indices. If - is a - UsualRandomVector, the subvector is defined by- . If - is a - CompositeRandomVector, defined by- with - , - some scalar functions, the subvector is - . - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getMarginal(1).getRealization()) [0.608202] >>> print(randomVector.getMarginal(1).getDistribution()) Normal(mu = 0, sigma = 1) 
 - getMean()¶
- Accessor to the mean of the RandomVector. - Returns:
- meanPoint
- Mean of the considered - UsualRandomVector.
 
- mean
 - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.5], [1.0, 1.5], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getMean()) [0,0.5] 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - getOperator()¶
- Accessor to the comparaison operator of the Event. - Returns:
- operatorComparisonOperator
- Comparaison operator used to define the - RandomVector.
 
- operator
 
 - getParameter()¶
- Accessor to the parameter of the distribution. - Returns:
- parameterPoint
- Parameter values. 
 
- parameter
 
 - getParameterDescription()¶
- Accessor to the parameter description of the distribution. - Returns:
- descriptionDescription
- Parameter names. 
 
- description
 
 - getProcess()¶
- Get the stochastic process. - Returns:
- processProcess
- Stochastic process used to define the - RandomVector.
 
- process
 
 - getRandomParameters()¶
- Accessor to the distribution’s random parameter randomParameters. - Returns:
- randomParametersRandomVector, the random parameters. 
 
- randomParameters
 
 - getRealization(*args)¶
- Compute one realization of the RandomVector. - Returns:
- aRealizationPoint
- Sequence of values randomly determined from the RandomVector definition. In the case of an event: one realization of the event (considered as a Bernoulli variable) which is a boolean value (1 for the realization of the event and 0 else). 
 
- aRealization
 - See also - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getRealization()) [0.608202,-1.26617] >>> print(randomVector.getRealization()) [-0.438266,1.20548] 
 - getSample(size)¶
- Compute realizations of the RandomVector. - Parameters:
- nint, 
- Number of realizations needed. 
 
- nint, 
- Returns:
- realizationsSample
- n sequences of values randomly determined from the RandomVector definition. In the case of an event: n realizations of the event (considered as a Bernoulli variable) which are boolean values (1 for the realization of the event and 0 else). 
 
- realizations
 - See also - Examples - >>> import openturns as ot >>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2)) >>> randomVector = ot.RandomVector(distribution) >>> ot.RandomGenerator.SetSeed(0) >>> print(randomVector.getSample(3)) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] 
 - getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns:
- idint
- Internal unique identifier. 
 
 
 - getThreshold()¶
- Accessor to the threshold of the Event. - Returns:
- thresholdfloat
- Threshold of the - RandomVector.
 
 
 - getVisibility()¶
- Accessor to the object’s visibility state. - Returns:
- visiblebool
- Visibility flag. 
 
 
 - hasName()¶
- Test if the object is named. - Returns:
- hasNamebool
- True if the name is not empty. 
 
 
 - hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns:
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - isComposite()¶
- Accessor to know if the RandomVector is a composite one. - Returns:
- isCompositebool
- Indicates if the RandomVector is of type Composite or not. 
 
 
 - isEvent()¶
- Whether the random vector is an event. - Returns:
- isEventbool
- Whether it takes it values in {0, 1}. 
 
 
 - setDescription(description)¶
- Accessor to the description of the RandomVector. - Parameters:
- descriptionstr or sequence of str
- Describes the components of the RandomVector. 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 - setParameter(parameters)¶
- Accessor to the parameter of the distribution. - Parameters:
- parametersequence of float
- Parameter values. 
 
 
 - setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters:
- idint
- Internal unique identifier. 
 
 
 - setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters:
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS
    