# DomainDifference¶

class DomainDifference(*args)

A Domain representing the difference of two Domain.

A point is inside this domain if it is contained in left domain but not in right domain.

Parameters:
left`Domain`

The first domain

right`Domain`

The second domain

Methods

 `computeDistance`(*args) Compute the Euclidean distance of a given point to the domain. `contains`(*args) Check if the given point is inside of the domain. Accessor to the object's name. Get the dimension of the domain. Accessor to the object's id. Accessor to the object's name. Accessor to the object's shadowed id. Accessor to the object's visibility state. Test if the object is named. Test if the object has a distinguishable name. `setName`(name) Accessor to the object's name. Accessor to the object's shadowed id. `setVisibility`(visible) Accessor to the object's visibility state.
__init__(*args)
computeDistance(*args)

Compute the Euclidean distance of a given point to the domain.

Parameters:
point or samplesequence of float or 2-d sequence of float

Point or Sample with the same dimension as the current domain’s dimension.

Returns:
distancefloat or Sample

Euclidean distance of the point to the domain.

contains(*args)

Check if the given point is inside of the domain.

Parameters:
pointsequence of float

Point with the same dimension as the current domain’s dimension.

Returns:
isInsidebool

Flag telling whether the point is inside this domain, which means that is is inside left domain, but not inside right domain.

Examples

```>>> import openturns as ot
>>> # First domain
>>> interval2d = ot.Interval([-1.0, -1.0], [0.5, 0.5])
>>> # Second domain
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]]
>>> simplices = [[0, 1, 2], [1, 2, 3]]
>>> mesh2d = ot.MeshDomain(ot.Mesh(vertices, simplices))
>>> difference = ot.DomainDifference(interval2d, mesh2d)
>>> [0.2, 0.1] in difference
False
>>> [0.1, 0.2] in difference
True
```
getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getDimension()

Get the dimension of the domain.

Returns:
dimint

Dimension of the domain.

getId()

Accessor to the object’s id.

Returns:
idint

Internal unique identifier.

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

Accessor to the object’s shadowed id.

Returns:
idint

Internal unique identifier.

getVisibility()

Accessor to the object’s visibility state.

Returns:
visiblebool

Visibility flag.

hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

hasVisibleName()

Test if the object has a distinguishable name.

Returns:
hasVisibleNamebool

True if the name is not empty and not the default one.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

Accessor to the object’s shadowed id.

Parameters:
idint

Internal unique identifier.

setVisibility(visible)

Accessor to the object’s visibility state.

Parameters:
visiblebool

Visibility flag.