LogNormalMuSigma

class LogNormalMuSigma(*args)

LogNormal distribution parameters.

Parameters:
mufloat

The mean of the log-normal random variable.

sigmafloat

The standard deviation of the log-normal random variable, with \sigma > 0.

gammafloat, optional

Location parameter.

See also

LogNormal

Notes

The \mu (resp. \sigma) parameter is the mean (resp. the standard deviation) of the log-normal random variable, i.e.

\Expect{X} &= \mu \\
\Var{X} &= \sigma^2

where X is the log-normal random variable.

The native parameters are \mu_\ell and \sigma_\ell, which are the mean and standard deviation of the logarithm of the log-normal variable, i.e. the parameters of the associated normal variable. They are defined as follows:

\sigma_\ell &= \sqrt{\log{ \left( 1+\frac{\sigma^2}{(\mu-\gamma)^2} \right) }} \\
\mu_\ell &= \log{(\mu-\gamma)} - \frac{\sigma_\ell^2}{2}

Examples

Create the parameters of the LogNormal distribution:

>>> import openturns as ot
>>> parameters = ot.LogNormalMuSigma(0.63, 3.3, -0.5)

Convert parameters into the native parameters:

>>> print(parameters.evaluate())
[-1.00492,1.50143,-0.5]

The gradient of the transformation of the native parameters into the new parameters:

>>> print(parameters.gradient())
[[  1.67704  -0.527552  0        ]
 [ -0.271228  0.180647  0        ]
 [ -1.67704   0.527552  1        ]]

Methods

__call__(inP)

Call self as a function.

evaluate()

Compute native parameters values.

getClassName()

Accessor to the object's name.

getDescription()

Get the description of the parameters.

getDistribution()

Build a distribution based on a set of native parameters.

getId()

Accessor to the object's id.

getName()

Accessor to the object's name.

getShadowedId()

Accessor to the object's shadowed id.

getValues()

Accessor to the parameters values.

getVisibility()

Accessor to the object's visibility state.

gradient()

Get the gradient.

hasName()

Test if the object is named.

hasVisibleName()

Test if the object has a distinguishable name.

inverse(inP)

Convert to native parameters.

setName(name)

Accessor to the object's name.

setShadowedId(id)

Accessor to the object's shadowed id.

setValues(values)

Accessor to the parameters values.

setVisibility(visible)

Accessor to the object's visibility state.

__init__(*args)
evaluate()

Compute native parameters values.

Returns:
valuesPoint

The native parameter values.

getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getDescription()

Get the description of the parameters.

Returns:
collectionDescription

List of parameters names.

getDistribution()

Build a distribution based on a set of native parameters.

Returns:
distributionDistribution

Distribution built with the native parameters.

getId()

Accessor to the object’s id.

Returns:
idint

Internal unique identifier.

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

getShadowedId()

Accessor to the object’s shadowed id.

Returns:
idint

Internal unique identifier.

getValues()

Accessor to the parameters values.

Returns:
valuesPoint

List of parameters values.

getVisibility()

Accessor to the object’s visibility state.

Returns:
visiblebool

Visibility flag.

gradient()

Get the gradient.

Returns:
gradientMatrix

The gradient of the transformation of the native parameters into the new parameters.

Notes

If we note (p_1, \dots, p_q) the native parameters and (p'_1, \dots, p'_q) the new ones, then the gradient matrix is \left( \dfrac{\partial p'_i}{\partial p_j} \right)_{1 \leq i,j \leq  q}.

hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

hasVisibleName()

Test if the object has a distinguishable name.

Returns:
hasVisibleNamebool

True if the name is not empty and not the default one.

inverse(inP)

Convert to native parameters.

Parameters:
inPsequence of float

The non-native parameters.

Returns:
outPPoint

The native parameters.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

setShadowedId(id)

Accessor to the object’s shadowed id.

Parameters:
idint

Internal unique identifier.

setValues(values)

Accessor to the parameters values.

Parameters:
valuessequence of float

List of parameters values.

setVisibility(visible)

Accessor to the object’s visibility state.

Parameters:
visiblebool

Visibility flag.

Examples using the class

Apply a transform or inverse transform on your polynomial chaos

Apply a transform or inverse transform on your polynomial chaos

Polynomial chaos is sensitive to the degree

Polynomial chaos is sensitive to the degree

Kriging :configure the optimization solver

Kriging :configure the optimization solver

Specify a simulation algorithm

Specify a simulation algorithm

Exploitation of simulation algorithm results

Exploitation of simulation algorithm results

Cross Entropy Importance Sampling

Cross Entropy Importance Sampling

Mix/max search and sensitivity from design

Mix/max search and sensitivity from design

Mix/max search using optimization

Mix/max search using optimization