LogNormalMuSigma¶
- class LogNormalMuSigma(*args)¶
LogNormal distribution parameters.
- Parameters:
- mufloat
The mean of the log-normal random variable.
- sigmafloat
The standard deviation of the log-normal random variable, with .
- gammafloat, optional
Location parameter.
See also
Notes
The (resp. ) parameter is the mean (resp. the standard deviation) of the log-normal random variable, i.e.
where is the log-normal random variable.
The native parameters are and , which are the mean and standard deviation of the logarithm of the log-normal variable, i.e. the parameters of the associated normal variable. They are defined as follows:
Examples
Create the parameters of the LogNormal distribution:
>>> import openturns as ot >>> parameters = ot.LogNormalMuSigma(0.63, 3.3, -0.5)
Convert parameters into the native parameters:
>>> print(parameters.evaluate()) [-1.00492,1.50143,-0.5]
The gradient of the transformation of the native parameters into the new parameters:
>>> print(parameters.gradient()) [[ 1.67704 -0.527552 0 ] [ -0.271228 0.180647 0 ] [ -1.67704 0.527552 1 ]]
Methods
__call__
(inP)Call self as a function.
evaluate
()Compute native parameters values.
Accessor to the object's name.
Get the description of the parameters.
Build a distribution based on a set of native parameters.
getId
()Accessor to the object's id.
getName
()Accessor to the object's name.
Accessor to the object's shadowed id.
Accessor to the parameters values.
Accessor to the object's visibility state.
gradient
()Get the gradient.
hasName
()Test if the object is named.
Test if the object has a distinguishable name.
inverse
(inP)Convert to native parameters.
setName
(name)Accessor to the object's name.
setShadowedId
(id)Accessor to the object's shadowed id.
setValues
(values)Accessor to the parameters values.
setVisibility
(visible)Accessor to the object's visibility state.
- __init__(*args)¶
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getDescription()¶
Get the description of the parameters.
- Returns:
- collection
Description
List of parameters names.
- collection
- getDistribution()¶
Build a distribution based on a set of native parameters.
- Returns:
- distribution
Distribution
Distribution built with the native parameters.
- distribution
- getId()¶
Accessor to the object’s id.
- Returns:
- idint
Internal unique identifier.
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getShadowedId()¶
Accessor to the object’s shadowed id.
- Returns:
- idint
Internal unique identifier.
- getVisibility()¶
Accessor to the object’s visibility state.
- Returns:
- visiblebool
Visibility flag.
- gradient()¶
Get the gradient.
- Returns:
- gradient
Matrix
The gradient of the transformation of the native parameters into the new parameters.
- gradient
Notes
If we note the native parameters and the new ones, then the gradient matrix is .
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- hasVisibleName()¶
Test if the object has a distinguishable name.
- Returns:
- hasVisibleNamebool
True if the name is not empty and not the default one.
- inverse(inP)¶
Convert to native parameters.
- Parameters:
- inPsequence of float
The non-native parameters.
- Returns:
- outP
Point
The native parameters.
- outP
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
- setShadowedId(id)¶
Accessor to the object’s shadowed id.
- Parameters:
- idint
Internal unique identifier.
- setValues(values)¶
Accessor to the parameters values.
- Parameters:
- valuessequence of float
List of parameters values.
- setVisibility(visible)¶
Accessor to the object’s visibility state.
- Parameters:
- visiblebool
Visibility flag.
Examples using the class¶
Apply a transform or inverse transform on your polynomial chaos
Polynomial chaos is sensitive to the degree
Kriging :configure the optimization solver
Specify a simulation algorithm
Exploitation of simulation algorithm results
Cross Entropy Importance Sampling
Mix/max search and sensitivity from design
Mix/max search using optimization