ExpertMixture¶
- class ExpertMixture(*args)¶
- Expert mixture defining a piecewise function according to a classifier. - This implements an expert mixture which is a piecewise function - defined by the collection of functions - given in basis and according to a classifier: - where the - classes are defined by the classifier. - In supervised mode the classifier partitions the input and output space at once: - whereas in non-supervised mode only the input space is partitioned: - Parameters:
- basissequence of Function
- A basis 
- classifierClassifier
- A classifier 
- supervisedbool (default=True)
- In supervised mode, the classifier partitions the space of - whereas in non-supervised mode the classifier only partitions the input space. 
 
- basissequence of 
 - See also - Notes - The number of experts must match the number of classes of the classifier. - Examples - >>> import openturns as ot >>> R = ot.CorrelationMatrix(2) >>> R[0, 1] = -0.99 >>> d1 = ot.Normal([-1.0, 1.0], [1.0, 1.0], R) >>> R[0, 1] = 0.99 >>> d2 = ot.Normal([1.0, 1.0], [1.0, 1.0], R) >>> distribution = ot.Mixture([d1, d2], [1.0]*2) >>> classifier = ot.MixtureClassifier(distribution) >>> f1 = ot.SymbolicFunction(['x'], ['-x']) >>> f2 = ot.SymbolicFunction(['x'], ['x']) >>> experts = [f1, f2] >>> evaluation = ot.ExpertMixture(experts, classifier) >>> moe = ot.Function(evaluation) >>> print(moe([-0.3])) [0.3] >>> print(moe([0.1])) [0.1] - Methods - __call__(*args)- Call self as a function. - draw(*args)- Draw the output of function as a - Graph.- Accessor to the number of times the function has been called. - Accessor to the output verification flag. - Accessor to the object's name. - Accessor the classifier. - Accessor to the description of the inputs and outputs. - Accessor the basis. - getId()- Accessor to the object's id. - Accessor to the description of the inputs. - Accessor to the number of the inputs. - getMarginal(*args)- Accessor to marginal. - getName()- Accessor to the object's name. - Accessor to the description of the outputs. - Accessor to the number of the outputs. - Accessor to the parameter values. - Accessor to the parameter description. - Accessor to the dimension of the parameter. - Accessor to the object's shadowed id. - Accessor to the object's visibility state. - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - Accessor to the validity flag. - isLinear()- Accessor to the linearity of the evaluation. - isLinearlyDependent(index)- Accessor to the linearity of the evaluation with regard to a specific variable. - parameterGradient(inP)- Gradient against the parameters. - setCheckOutput(checkOutput)- Accessor to the output verification flag. - setClassifier(classifier)- Accessor the classifier. - setDescription(description)- Accessor to the description of the inputs and outputs. - setExperts(experts)- Accessor the basis. - setInputDescription(inputDescription)- Accessor to the description of the inputs. - setName(name)- Accessor to the object's name. - setOutputDescription(outputDescription)- Accessor to the description of the outputs. - setParameter(parameters)- Accessor to the parameter values. - setParameterDescription(description)- Accessor to the parameter description. - setShadowedId(id)- Accessor to the object's shadowed id. - setVisibility(visible)- Accessor to the object's visibility state. - __init__(*args)¶
 - draw(*args)¶
- Draw the output of function as a - Graph.- Available usages:
- draw(inputMarg, outputMarg, CP, xiMin, xiMax, ptNb) - draw(firstInputMarg, secondInputMarg, outputMarg, CP, xiMin_xjMin, xiMax_xjMax, ptNbs) - draw(xiMin, xiMax, ptNb) - draw(xiMin_xjMin, xiMax_xjMax, ptNbs) 
 - Parameters:
- outputMarg, inputMargint, 
- outputMarg is the index of the marginal to draw as a function of the marginal with index inputMarg. 
- firstInputMarg, secondInputMargint, 
- In the 2D case, the marginal outputMarg is drawn as a function of the two marginals with indexes firstInputMarg and secondInputMarg. 
- CPsequence of float
- Central point. 
- xiMin, xiMaxfloat
- Define the interval where the curve is plotted. 
- xiMin_xjMin, xiMax_xjMaxsequence of float of dimension 2.
- In the 2D case, define the intervals where the curves are plotted. 
- ptNbint or list of ints of dimension 2 
- The number of points to draw the curves. 
 
- outputMarg, inputMargint, 
 - Notes - We note - where - and - , with - and - . - In the first usage: 
 - Draws graph of the given 1D outputMarg marginal - as a function of the given 1D inputMarg marginal with respect to the variation of - in the interval - , when all the other components of - are fixed to the corresponding ones of the central point CP. Then it draws the graph: - . - In the second usage: 
 - Draws the iso-curves of the given outputMarg marginal - as a function of the given 2D firstInputMarg and secondInputMarg marginals with respect to the variation of - in the interval - , when all the other components of - are fixed to the corresponding ones of the central point CP. Then it draws the graph: - . - In the third usage: 
 - The same as the first usage but only for function - . - In the fourth usage: 
 - The same as the second usage but only for function - . - Examples - >>> import openturns as ot >>> from openturns.viewer import View >>> f = ot.SymbolicFunction(['x'], ['sin(2*pi_*x)*exp(-x^2/2)']) >>> graph = f.draw(-1.2, 1.2, 100) >>> View(graph).show() 
 - getCallsNumber()¶
- Accessor to the number of times the function has been called. - Returns:
- calls_numberint
- Integer that counts the number of times the function has been called since its creation. 
 
 
 - getCheckOutput()¶
- Accessor to the output verification flag. - Returns:
- check_outputbool
- Whether to check return values for nan or inf. 
 
 
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getClassifier()¶
- Accessor the classifier. - Returns:
- classifierClassifier
- The classifier. 
 
- classifier
 
 - getDescription()¶
- Accessor to the description of the inputs and outputs. - Returns:
- descriptionDescription
- Description of the inputs and the outputs. 
 
- description
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getDescription()) [x1,x2,y0] 
 - getId()¶
- Accessor to the object’s id. - Returns:
- idint
- Internal unique identifier. 
 
 
 - getInputDescription()¶
- Accessor to the description of the inputs. - Returns:
- descriptionDescription
- Description of the inputs. 
 
- description
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getInputDescription()) [x1,x2] 
 - getInputDimension()¶
- Accessor to the number of the inputs. - Returns:
- number_inputsint
- Number of inputs. 
 
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getInputDimension()) 2 
 - getMarginal(*args)¶
- Accessor to marginal. - Parameters:
- indicesint or list of ints
- Set of indices for which the marginal is extracted. 
 
- Returns:
- marginalFunction
- Function corresponding to either - or - , with - and - . 
 
- marginal
 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - getOutputDescription()¶
- Accessor to the description of the outputs. - Returns:
- descriptionDescription
- Description of the outputs. 
 
- description
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getOutputDescription()) [y0] 
 - getOutputDimension()¶
- Accessor to the number of the outputs. - Returns:
- number_outputsint
- Number of outputs. 
 
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getOutputDimension()) 1 
 - getParameterDescription()¶
- Accessor to the parameter description. - Returns:
- parameterDescription
- The parameter description. 
 
- parameter
 
 - getParameterDimension()¶
- Accessor to the dimension of the parameter. - Returns:
- parameter_dimensionint
- Dimension of the parameter. 
 
 
 - getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns:
- idint
- Internal unique identifier. 
 
 
 - getVisibility()¶
- Accessor to the object’s visibility state. - Returns:
- visiblebool
- Visibility flag. 
 
 
 - hasName()¶
- Test if the object is named. - Returns:
- hasNamebool
- True if the name is not empty. 
 
 
 - hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns:
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - isActualImplementation()¶
- Accessor to the validity flag. - Returns:
- is_implbool
- Whether the implementation is valid. 
 
 
 - isLinear()¶
- Accessor to the linearity of the evaluation. - Returns:
- linearbool
- True if the evaluation is linear, False otherwise. 
 
 
 - isLinearlyDependent(index)¶
- Accessor to the linearity of the evaluation with regard to a specific variable. - Parameters:
- indexint
- The index of the variable with regard to which linearity is evaluated. 
 
- Returns:
- linearbool
- True if the evaluation is linearly dependent on the specified variable, False otherwise. 
 
 
 - parameterGradient(inP)¶
- Gradient against the parameters. - Parameters:
- xsequence of float
- Input point 
 
- Returns:
- parameter_gradientMatrix
- The parameters gradient computed at x. 
 
- parameter_gradient
 
 - setCheckOutput(checkOutput)¶
- Accessor to the output verification flag. - Parameters:
- check_outputbool
- Whether to check return values for nan or inf. 
 
 
 - setClassifier(classifier)¶
- Accessor the classifier. - Parameters:
- classifierClassifier
- The classifier. 
 
- classifier
 
 - setDescription(description)¶
- Accessor to the description of the inputs and outputs. - Parameters:
- descriptionsequence of str
- Description of the inputs and the outputs. 
 
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getDescription()) [x1,x2,y0] >>> f.setDescription(['a','b','y']) >>> print(f.getDescription()) [a,b,y] 
 - setInputDescription(inputDescription)¶
- Accessor to the description of the inputs. - Returns:
- descriptionDescription
- Description of the inputs. 
 
- description
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 - setOutputDescription(outputDescription)¶
- Accessor to the description of the outputs. - Returns:
- descriptionDescription
- Description of the outputs. 
 
- description
 
 - setParameter(parameters)¶
- Accessor to the parameter values. - Parameters:
- parametersequence of float
- The parameter values. 
 
 
 - setParameterDescription(description)¶
- Accessor to the parameter description. - Parameters:
- parameterDescription
- The parameter description. 
 
- parameter
 
 - setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters:
- idint
- Internal unique identifier. 
 
 
 - setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters:
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS
    